Self-Alignment for Factuality: Mitigating Hallucinations in LLMs via Self-Evaluation
- URL: http://arxiv.org/abs/2402.09267v2
- Date: Tue, 11 Jun 2024 12:22:14 GMT
- Title: Self-Alignment for Factuality: Mitigating Hallucinations in LLMs via Self-Evaluation
- Authors: Xiaoying Zhang, Baolin Peng, Ye Tian, Jingyan Zhou, Lifeng Jin, Linfeng Song, Haitao Mi, Helen Meng,
- Abstract summary: Large language models (LLMs) often struggle with factual inaccuracies, even when they hold relevant knowledge.
We leverage the self-evaluation capability of an LLM to provide training signals that steer the model towards factuality.
We show that the proposed self-alignment approach substantially enhances factual accuracy over Llama family models across three key knowledge-intensive tasks.
- Score: 71.91287418249688
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite showing increasingly human-like abilities, large language models (LLMs) often struggle with factual inaccuracies, i.e. "hallucinations", even when they hold relevant knowledge. To address these hallucinations, current approaches typically necessitate high-quality human factuality annotations. In this work, we explore Self-Alignment for Factuality, where we leverage the self-evaluation capability of an LLM to provide training signals that steer the model towards factuality. Specifically, we incorporate Self-Eval, a self-evaluation component, to prompt an LLM to validate the factuality of its own generated responses solely based on its internal knowledge. Additionally, we design Self-Knowledge Tuning (SK-Tuning) to augment the LLM's self-evaluation ability by improving the model's confidence estimation and calibration. We then utilize these self-annotated responses to fine-tune the model via Direct Preference Optimization algorithm. We show that the proposed self-alignment approach substantially enhances factual accuracy over Llama family models across three key knowledge-intensive tasks on TruthfulQA and BioGEN.
Related papers
- ReVISE: Learning to Refine at Test-Time via Intrinsic Self-Verification [53.80183105328448]
Refine via Intrinsic Self-Verification (ReVISE) is an efficient framework that enables LLMs to self-correct their outputs through self-verification.
Our experiments on various reasoning tasks demonstrate that ReVISE achieves efficient self-correction and significantly improves reasoning performance.
arXiv Detail & Related papers (2025-02-20T13:50:02Z) - Mind the Gap: Examining the Self-Improvement Capabilities of Large Language Models [10.449015816015566]
Self-improvement is a mechanism in Large Language Model (LLM) pre-training, post-training and test-time inference.
We provide a mathematical formulation for self-improvement, which is largely governed by a quantity which we formalize as the generation-verification gap.
We also examine when self-improvement is possible, an iterative self-improvement procedure, and ways to improve its performance.
arXiv Detail & Related papers (2024-12-03T18:47:26Z) - Large Language Models have Intrinsic Self-Correction Ability [18.79203446847577]
Large language models (LLMs) have attracted significant attention for their exceptional abilities in various natural language processing tasks.
One promising solution to improve the LLMs' performance is to ask LLMs to revise their answer after generation.
In intrinsic self-correction is considered a promising direction because it does not utilize external knowledge.
arXiv Detail & Related papers (2024-06-21T22:29:40Z) - SaySelf: Teaching LLMs to Express Confidence with Self-Reflective Rationales [29.33581578047835]
SaySelf is a training framework that teaches large language models to express more accurate fine-grained confidence estimates.
In addition, SaySelf directs LLMs to produce self-reflective rationales that clearly identify gaps in their parametric knowledge.
We show that the generated self-reflective rationales are reasonable and can further contribute to the calibration.
arXiv Detail & Related papers (2024-05-31T16:21:16Z) - A Theoretical Understanding of Self-Correction through In-context Alignment [51.622068973630796]
Large language models (LLMs) are capable of improving their abilities purely by self-correction.
We show that when LLMs give relatively accurate self-examinations as rewards, they are capable of refining responses in an in-context way.
Inspired by these findings, we also illustrate applications of self-correction, such as defending against LLM jailbreaks.
arXiv Detail & Related papers (2024-05-28T22:33:02Z) - LLMs can learn self-restraint through iterative self-reflection [57.26854891567574]
Large Language Models (LLMs) must be capable of dynamically adapting their behavior based on their level of knowledge and uncertainty associated with specific topics.
This adaptive behavior, which we refer to as self-restraint, is non-trivial to teach.
We devise a utility function that can encourage the model to produce responses only when it is confident in them.
arXiv Detail & Related papers (2024-05-15T13:35:43Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - Confidence Matters: Revisiting Intrinsic Self-Correction Capabilities of Large Language Models [23.42725642076256]
Large Language Models (LLMs) have catalyzed an increasing interest in their self-correction capabilities.
This paper presents a comprehensive investigation into the intrinsic self-correction of LLMs.
We develop an "If-or-Else" (IoE) prompting framework, designed to guide LLMs in assessing their own "confidence"
arXiv Detail & Related papers (2024-02-19T21:38:02Z) - Learning to Trust Your Feelings: Leveraging Self-awareness in LLMs for
Hallucination Mitigation [9.730412606588335]
We evaluate the ability of Large Language Models (LLMs) to discern and express their internal knowledge state.
We propose a Reinforcement Learning from Knowledge Feedback (RLKF) training framework, leveraging reinforcement learning to enhance the factuality and honesty of LLMs.
arXiv Detail & Related papers (2024-01-27T16:19:30Z) - SELF: Self-Evolution with Language Feedback [68.6673019284853]
'SELF' (Self-Evolution with Language Feedback) is a novel approach to advance large language models.
It enables LLMs to self-improve through self-reflection, akin to human learning processes.
Our experiments in mathematics and general tasks demonstrate that SELF can enhance the capabilities of LLMs without human intervention.
arXiv Detail & Related papers (2023-10-01T00:52:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.