Resource-Efficient Sensor Fusion via System-Wide Dynamic Gated Neural Networks
- URL: http://arxiv.org/abs/2410.16723v1
- Date: Tue, 22 Oct 2024 06:12:04 GMT
- Title: Resource-Efficient Sensor Fusion via System-Wide Dynamic Gated Neural Networks
- Authors: Chetna Singhal, Yashuo Wu, Francesco Malandrino, Sharon Ladron de Guevara Contreras, Marco Levorato, Carla Fabiana Chiasserini,
- Abstract summary: We propose a novel algorithmic strategy called Quantile-constrained Inference (QIC)
QIC makes joint, high-quality, swift decisions on all the above aspects of the system.
Our results confirm that QIC matches the optimum and outperforms its alternatives by over 80%.
- Score: 16.0018681576301
- License:
- Abstract: Mobile systems will have to support multiple AI-based applications, each leveraging heterogeneous data sources through DNN architectures collaboratively executed within the network. To minimize the cost of the AI inference task subject to requirements on latency, quality, and - crucially - reliability of the inference process, it is vital to optimize (i) the set of sensors/data sources and (ii) the DNN architecture, (iii) the network nodes executing sections of the DNN, and (iv) the resources to use. To this end, we leverage dynamic gated neural networks with branches, and propose a novel algorithmic strategy called Quantile-constrained Inference (QIC), based upon quantile-Constrained policy optimization. QIC makes joint, high-quality, swift decisions on all the above aspects of the system, with the aim to minimize inference energy cost. We remark that this is the first contribution connecting gated dynamic DNNs with infrastructure-level decision making. We evaluate QIC using a dynamic gated DNN with stems and branches for optimal sensor fusion and inference, trained on the RADIATE dataset offering Radar, LiDAR, and Camera data, and real-world wireless measurements. Our results confirm that QIC matches the optimum and outperforms its alternatives by over 80%.
Related papers
- DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - RLEEGNet: Integrating Brain-Computer Interfaces with Adaptive AI for
Intuitive Responsiveness and High-Accuracy Motor Imagery Classification [0.0]
We introduce a framework that leverages Reinforcement Learning with Deep Q-Networks (DQN) for classification tasks.
We present a preprocessing technique for multiclass motor imagery (MI) classification in a One-Versus-The-Rest (OVR) manner.
The integration of DQN with a 1D-CNN-LSTM architecture optimize the decision-making process in real-time.
arXiv Detail & Related papers (2024-02-09T02:03:13Z) - ILP-based Resource Optimization Realized by Quantum Annealing for Optical Wide-area Communication Networks -- A Framework for Solving Combinatorial Problems of a Real-world Application by Quantum Annealing [5.924780594614675]
In recent works we demonstrated how such a problem could be cast as a quadratic unconstrained binary optimization (QUBO) problem that can be embedded onto the D-Wave AdvantageTM quantum annealer system.
Here we report on our investigations for optimizing system parameters, and how we incorporate machine learning (ML) techniques to further improve on the quality of solutions.
We successfully implement this NN in a simple integer linear programming (ILP) example, demonstrating how the NN can fully map out the solution space that was not captured by D-Wave.
arXiv Detail & Related papers (2024-01-01T17:52:58Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - A Robust Deep Learning-Based Beamforming Design for RIS-assisted
Multiuser MISO Communications with Practical Constraints [4.727307803726522]
We consider a RIS-aided multiuser multiple-input single-output downlink communication system.
We develop a deep quantization neural network (DQNN) to simultaneously design the active and passive beamforming.
We extend the two proposed DQNN-based algorithms to the case that the discrete phase shifts and imperfect CSI are considered simultaneously.
arXiv Detail & Related papers (2021-11-12T03:53:20Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Impact of On-Chip Interconnect on In-Memory Acceleration of Deep Neural
Networks [11.246977770747526]
Increase in connection density increases on-chip data movement.
We show that the point-to-point (P2P)-based interconnect is incapable of handling a high volume of on-chip data movement.
We propose a technique to determine the optimal choice of interconnect for any given DNN.
arXiv Detail & Related papers (2021-07-06T02:44:00Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
This paper presents a machine learning strategy that tackles a distributed optimization task in a wireless network with an arbitrary number of randomly interconnected nodes.
We develop a flexible deep neural network formalism termed distributed message-passing neural network (DMPNN) with forward and backward computations independent of the network topology.
arXiv Detail & Related papers (2021-06-15T09:03:28Z) - Deep Learning-based Resource Allocation For Device-to-Device
Communication [66.74874646973593]
We propose a framework for the optimization of the resource allocation in multi-channel cellular systems with device-to-device (D2D) communication.
A deep learning (DL) framework is proposed, where the optimal resource allocation strategy for arbitrary channel conditions is approximated by deep neural network (DNN) models.
Our simulation results confirm that near-optimal performance can be attained with low time, which underlines the real-time capability of the proposed scheme.
arXiv Detail & Related papers (2020-11-25T14:19:23Z) - A Progressive Sub-Network Searching Framework for Dynamic Inference [33.93841415140311]
We propose a progressive sub-net searching framework, which is embedded with several effective techniques, including trainable noise ranking, channel group and fine-tuning threshold setting, sub-nets re-selection.
Our proposed method achieves much better dynamic inference accuracy compared with prior popular Universally-Slimmable-Network by 4.4%-maximally and 2.3%-averagely in ImageNet dataset with the same model size.
arXiv Detail & Related papers (2020-09-11T22:56:02Z) - Resource Allocation via Graph Neural Networks in Free Space Optical
Fronthaul Networks [119.81868223344173]
This paper investigates the optimal resource allocation in free space optical (FSO) fronthaul networks.
We consider the graph neural network (GNN) for the policy parameterization to exploit the FSO network structure.
The primal-dual learning algorithm is developed to train the GNN in a model-free manner, where the knowledge of system models is not required.
arXiv Detail & Related papers (2020-06-26T14:20:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.