論文の概要: Optimal Thresholding Linear Bandit
- arxiv url: http://arxiv.org/abs/2402.09467v1
- Date: Sun, 11 Feb 2024 21:25:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-16 18:42:52.308163
- Title: Optimal Thresholding Linear Bandit
- Title(参考訳): 最適しきい値線形バンディット
- Authors: Eduardo Ochoa Rivera and Ambuj Tewari
- Abstract要約: 本稿では,線形帯域に一定の信頼を抱いた$epsilon$-Thresholding Bandit Problem (TBP) という新しい純粋探索問題について検討する。
我々は,この場合のベストアーム識別のために設計されたアルゴリズムを,複雑性に最適なTBPに拡張する。
- 参考スコア(独自算出の注目度): 21.2523248114561
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study a novel pure exploration problem: the $\epsilon$-Thresholding Bandit
Problem (TBP) with fixed confidence in stochastic linear bandits. We prove a
lower bound for the sample complexity and extend an algorithm designed for Best
Arm Identification in the linear case to TBP that is asymptotically optimal.
- Abstract(参考訳): 我々は, 確率線形バンドイットの信頼度を固定した$\epsilon$-Thresholding Bandit Problem (TBP) という新しい純粋探索問題を研究する。
サンプル複雑性に対する下限を証明し、線形の場合の最良のアーム識別のために設計されたアルゴリズムを漸近的に最適であるtbpに拡張する。
関連論文リスト
- Indexed Minimum Empirical Divergence-Based Algorithms for Linear Bandits [55.938644481736446]
Indexed Minimum Empirical Divergence (IMED)は、マルチアームバンディット問題に対する非常に効果的なアプローチである。
UCBベースのアルゴリズムとトンプソンサンプリングを実証的に上回ることが観察されている。
我々は、LinIMEDアルゴリズムのファミリーと呼ぶIMEDアルゴリズムの新しい線形バージョンを提案する。
論文 参考訳(メタデータ) (2024-05-24T04:11:58Z) - LinearAPT: An Adaptive Algorithm for the Fixed-Budget Thresholding
Linear Bandit Problem [4.666048091337632]
本稿では、Thresholding Linear Bandit(TLB)問題の固定予算設定のために設計された新しいアルゴリズムであるLinearAPTを提案する。
コントリビューションでは、LinearAPTの適応性、単純性、計算効率を強調しており、複雑なシーケンシャルな意思決定課題に対処するためのツールキットとして貴重なものとなっている。
論文 参考訳(メタデータ) (2024-03-10T15:01:50Z) - An Optimal Algorithm for the Real-Valued Combinatorial Pure Exploration
of Multi-Armed Bandit [65.268245109828]
多武装バンディット(R-CPE-MAB)の真価純探査問題について検討する。
既存のR-CPE-MABの手法は、いわゆるトランスダクティブ線形帯域の特殊な場合と見なすことができる。
本稿では,差分探索アルゴリズム (CombGapE) を提案する。
論文 参考訳(メタデータ) (2023-06-15T15:37:31Z) - Mean-based Best Arm Identification in Stochastic Bandits under Reward
Contamination [80.53485617514707]
本稿では,ギャップベースアルゴリズムと逐次除去に基づく2つのアルゴリズムを提案する。
具体的には、ギャップベースのアルゴリズムでは、サンプルの複雑さは定数要素まで最適であり、連続的な除去では対数因子まで最適である。
論文 参考訳(メタデータ) (2021-11-14T21:49:58Z) - Upper Confidence Bounds for Combining Stochastic Bandits [52.10197476419621]
バンディットアルゴリズムを結合する簡単な手法を提案する。
私たちのアプローチは、個々のbanditアルゴリズムのそれぞれを、より高いレベルのn$-armed bandit問題のアームとして扱う"meta-ucb"手順に基づいています。
論文 参考訳(メタデータ) (2020-12-24T05:36:29Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
複数の次元に沿った最先端技術を改善する新しいアルゴリズムを提案する。
非文脈線形帯域の特別な場合において、学習地平線に対して最小限の最適性を確立する。
論文 参考訳(メタデータ) (2020-10-23T09:12:47Z) - Gamification of Pure Exploration for Linear Bandits [34.16123941778227]
線形バンディットの文脈において、ベストアーム識別を含む活発な純粋探索環境について検討する。
標準的なマルチアームバンディットには最適アルゴリズムが存在するが、リニアバンディットにおけるベストアーム識別のためのアルゴリズムの存在は明白である。
線形帯域における固定信頼純粋探索のための第一の洞察的最適アルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-07-02T08:20:35Z) - Optimal Best-arm Identification in Linear Bandits [79.3239137440876]
サンプルの複雑さが既知のインスタンス固有の下界と一致する単純なアルゴリズムを考案する。
既存のベストアーム識別戦略とは異なり、我々のアルゴリズムは武器の数に依存しない停止規則を用いる。
論文 参考訳(メタデータ) (2020-06-29T14:25:51Z) - An Empirical Process Approach to the Union Bound: Practical Algorithms
for Combinatorial and Linear Bandits [34.06611065493047]
本稿では、信頼度と予算設定の固定化において、純探索線形帯域問題に対する近似アルゴリズムを提案する。
サンプルの複雑性がインスタンスの幾何でスケールし、アームの数に縛られた明示的な結合を避けるアルゴリズムを提供する。
また,固定予算設定における線形帯域幅に対する最初のアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-21T00:56:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。