AI-Enabled Lung Cancer Prognosis
- URL: http://arxiv.org/abs/2402.09476v1
- Date: Mon, 12 Feb 2024 22:09:43 GMT
- Title: AI-Enabled Lung Cancer Prognosis
- Authors: Mahtab Darvish, Ryan Trask, Patrick Tallon, M\'elina Khansari, Lei
Ren, Michelle Hershman, Bardia Yousefi
- Abstract summary: Lung cancer is the primary cause of cancer-related mortality, claiming approximately 1.79 million lives globally in 2020.
Among these, Non-Small Cell Lung Cancer (NSCLC) is the predominant subtype, characterized by a notably bleak prognosis.
Recent advancements in artificial intelligence (AI) have revolutionized the landscape of lung cancer prognosis.
- Score: 1.2054979237210064
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lung cancer is the primary cause of cancer-related mortality, claiming
approximately 1.79 million lives globally in 2020, with an estimated 2.21
million new cases diagnosed within the same period. Among these, Non-Small Cell
Lung Cancer (NSCLC) is the predominant subtype, characterized by a notably
bleak prognosis and low overall survival rate of approximately 25% over five
years across all disease stages. However, survival outcomes vary considerably
based on the stage at diagnosis and the therapeutic interventions administered.
Recent advancements in artificial intelligence (AI) have revolutionized the
landscape of lung cancer prognosis. AI-driven methodologies, including machine
learning and deep learning algorithms, have shown promise in enhancing survival
prediction accuracy by efficiently analyzing complex multi-omics data and
integrating diverse clinical variables. By leveraging AI techniques, clinicians
can harness comprehensive prognostic insights to tailor personalized treatment
strategies, ultimately improving patient outcomes in NSCLC. Overviewing
AI-driven data processing can significantly help bolster the understanding and
provide better directions for using such systems.
Related papers
- Enhancing Clinically Significant Prostate Cancer Prediction in T2-weighted Images through Transfer Learning from Breast Cancer [71.91773485443125]
Transfer learning is a technique that leverages acquired features from a domain with richer data to enhance the performance of a domain with limited data.
In this paper, we investigate the improvement of clinically significant prostate cancer prediction in T2-weighted images through transfer learning from breast cancer.
arXiv Detail & Related papers (2024-05-13T15:57:27Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
Neoadjuvant chemotherapy has recently gained popularity as a promising treatment strategy for breast cancer.
The current process to recommend neoadjuvant chemotherapy relies on the subjective evaluation of medical experts.
This research investigates the application of optimized CDI$s$ to enhance breast cancer pathologic complete response prediction.
arXiv Detail & Related papers (2024-05-13T15:40:56Z) - Survival Prediction Across Diverse Cancer Types Using Neural Networks [40.392772795903795]
Gastric cancer and Colon adenocarcinoma represent widespread and challenging malignancies.
Medical community has embraced the 5-year survival rate as a vital metric for estimating patient outcomes.
This study introduces a pioneering approach to enhance survival prediction models for gastric and Colon adenocarcinoma patients.
arXiv Detail & Related papers (2024-04-11T21:47:13Z) - Application analysis of ai technology combined with spiral CT scanning
in early lung cancer screening [15.6839495538166]
The overall 5-year survival rate of lung cancer patients is still lower than 20% and is staged.
In recent years, artificial intelligence technology has gradually begun to be applied in oncology.
This study applied the combined method in early lung cancer screening, aiming to find a safe and efficient screening mode.
arXiv Detail & Related papers (2024-01-26T07:58:09Z) - Cancer-Net PCa-Gen: Synthesis of Realistic Prostate Diffusion Weighted
Imaging Data via Anatomic-Conditional Controlled Latent Diffusion [68.45407109385306]
In Canada, prostate cancer is the most common form of cancer in men and accounted for 20% of new cancer cases for this demographic in 2022.
There has been significant interest in the development of deep neural networks for prostate cancer diagnosis, prognosis, and treatment planning using diffusion weighted imaging (DWI) data.
In this study, we explore the efficacy of latent diffusion for generating realistic prostate DWI data through the introduction of an anatomic-conditional controlled latent diffusion strategy.
arXiv Detail & Related papers (2023-11-30T15:11:03Z) - Breast Cancer Detection and Diagnosis: A comparative study of
state-of-the-arts deep learning architectures [3.883460584034766]
The survival rates for breast cancer patients in certain third-world countries, like South Africa, are alarmingly low.
Medical specialists and researchers have turned to domain-specific AI approaches, specifically deep learning models, to develop end-to-end solutions.
This research focuses on evaluating the performance of various cutting-edge convolutional neural network (CNN) architectures in comparison to a relatively new model called the Vision Trans-former (ViT)
arXiv Detail & Related papers (2023-05-31T15:21:34Z) - Deep learning methods for drug response prediction in cancer:
predominant and emerging trends [50.281853616905416]
Exploiting computational predictive models to study and treat cancer holds great promise in improving drug development and personalized design of treatment plans.
A wave of recent papers demonstrates promising results in predicting cancer response to drug treatments while utilizing deep learning methods.
This review allows to better understand the current state of the field and identify major challenges and promising solution paths.
arXiv Detail & Related papers (2022-11-18T03:26:31Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
Gastric endoscopic screening is an effective way to decide appropriate gastric cancer (GC) treatment at an early stage, reducing GC-associated mortality rate.
We propose a practical AI system that enables five subclassifications of GC pathology, which can be directly matched to general GC treatment guidance.
arXiv Detail & Related papers (2022-02-17T08:33:52Z) - DeepMMSA: A Novel Multimodal Deep Learning Method for Non-small Cell
Lung Cancer Survival Analysis [8.78724404464036]
We propose a multimodal deep learning method for non-small cell lung cancer (NSCLC) survival analysis, named DeepMMSA.
This method leverages CT images in combination with clinical data, enabling the abundant information hold within medical images to be associate with lung cancer survival information.
arXiv Detail & Related papers (2021-06-12T11:02:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.