Large Language Model-Based Interpretable Machine Learning Control in
Building Energy Systems
- URL: http://arxiv.org/abs/2402.09584v1
- Date: Wed, 14 Feb 2024 21:19:33 GMT
- Title: Large Language Model-Based Interpretable Machine Learning Control in
Building Energy Systems
- Authors: Liang Zhang, Zhelun Chen
- Abstract summary: This paper investigates and explores Interpretable Machine Learning (IML), a branch of Machine Learning (ML) that enhances transparency and understanding of models and their inferences.
We develop an innovative framework that combines the principles of Shapley values and the in-context learning feature of Large Language Models (LLMs)
The paper presents a case study to demonstrate the feasibility of the developed IML framework for model predictive control-based precooling under demand response events in a virtual testbed.
- Score: 3.580636644178055
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The potential of Machine Learning Control (MLC) in HVAC systems is hindered
by its opaque nature and inference mechanisms, which is challenging for users
and modelers to fully comprehend, ultimately leading to a lack of trust in
MLC-based decision-making. To address this challenge, this paper investigates
and explores Interpretable Machine Learning (IML), a branch of Machine Learning
(ML) that enhances transparency and understanding of models and their
inferences, to improve the credibility of MLC and its industrial application in
HVAC systems. Specifically, we developed an innovative framework that combines
the principles of Shapley values and the in-context learning feature of Large
Language Models (LLMs). While the Shapley values are instrumental in dissecting
the contributions of various features in ML models, LLM provides an in-depth
understanding of rule-based parts in MLC; combining them, LLM further packages
these insights into a coherent, human-understandable narrative. The paper
presents a case study to demonstrate the feasibility of the developed IML
framework for model predictive control-based precooling under demand response
events in a virtual testbed. The results indicate that the developed framework
generates and explains the control signals in accordance with the rule-based
rationale.
Related papers
- Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Inductive Learning of Logical Theories with LLMs: A Complexity-graded Analysis [9.865771016218549]
This work presents a novel systematic methodology to analyse the capabilities and limitations of Large Language Models (LLMs)
The analysis is complexity-graded w.r.t. rule dependency structure, allowing quantification of specific inference challenges on LLM performance.
arXiv Detail & Related papers (2024-08-15T16:41:00Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - TokenSHAP: Interpreting Large Language Models with Monte Carlo Shapley Value Estimation [0.0]
TokenSHAP is a novel method for interpreting large language models.
It adapts Shapley values from cooperative game theory to natural language processing.
It provides interpretable, quantitative measures of token importance.
arXiv Detail & Related papers (2024-07-14T08:07:50Z) - Large Language Models are Interpretable Learners [53.56735770834617]
In this paper, we show a combination of Large Language Models (LLMs) and symbolic programs can bridge the gap between expressiveness and interpretability.
The pretrained LLM with natural language prompts provides a massive set of interpretable modules that can transform raw input into natural language concepts.
As the knowledge learned by LSP is a combination of natural language descriptions and symbolic rules, it is easily transferable to humans (interpretable) and other LLMs.
arXiv Detail & Related papers (2024-06-25T02:18:15Z) - Unveiling LLM Mechanisms Through Neural ODEs and Control Theory [3.4039202831583903]
This study uses Neural Ordinary Differential Equations to unravel the intricate relationships between inputs and outputs in Large Language Models (LLMs)
Neural ODEs play a pivotal role in this investigation by providing a dynamic model that captures the continuous evolution of data within the LLMs.
robust control mechanisms are applied to strategically adjust the model's outputs, ensuring they not only maintain high quality and reliability but also adhere to specific performance criteria.
arXiv Detail & Related papers (2024-06-23T22:56:34Z) - Verbalized Machine Learning: Revisiting Machine Learning with Language Models [63.10391314749408]
We introduce the framework of verbalized machine learning (VML)
VML constrains the parameter space to be human-interpretable natural language.
We empirically verify the effectiveness of VML, and hope that VML can serve as a stepping stone to stronger interpretability.
arXiv Detail & Related papers (2024-06-06T17:59:56Z) - Towards Modeling Learner Performance with Large Language Models [7.002923425715133]
This paper investigates whether the pattern recognition and sequence modeling capabilities of LLMs can be extended to the domain of knowledge tracing.
We compare two approaches to using LLMs for this task, zero-shot prompting and model fine-tuning, with existing, non-LLM approaches to knowledge tracing.
While LLM-based approaches do not achieve state-of-the-art performance, fine-tuned LLMs surpass the performance of naive baseline models and perform on par with standard Bayesian Knowledge Tracing approaches.
arXiv Detail & Related papers (2024-02-29T14:06:34Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - Scientific Inference With Interpretable Machine Learning: Analyzing Models to Learn About Real-World Phenomena [4.312340306206884]
Interpretable machine learning offers a solution by analyzing models holistically to derive interpretations.
Current IML research is focused on auditing ML models rather than leveraging them for scientific inference.
We present a framework for designing IML methods-termed 'property descriptors' that illuminate not just the model, but also the phenomenon it represents.
arXiv Detail & Related papers (2022-06-11T10:13:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.