Towards Precision Cardiovascular Analysis in Zebrafish: The ZACAF
Paradigm
- URL: http://arxiv.org/abs/2402.09658v1
- Date: Thu, 15 Feb 2024 01:58:49 GMT
- Title: Towards Precision Cardiovascular Analysis in Zebrafish: The ZACAF
Paradigm
- Authors: Amir Mohammad Naderi, Jennifer G. Casey, Mao-Hsiang Huang, Rachelle
Victorio, David Y. Chiang, Calum MacRae, Hung Cao, Vandana A. Gupta
- Abstract summary: We have developed a framework to quantify the cardiac function in zebrafish.
We further applied data augmentation, Transfer Learning, and Test Time Augmentation to improve the performance.
- Score: 0.9837190842240352
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantifying cardiovascular parameters like ejection fraction in zebrafish as
a host of biological investigations has been extensively studied. Since current
manual monitoring techniques are time-consuming and fallible, several image
processing frameworks have been proposed to automate the process. Most of these
works rely on supervised deep-learning architectures. However, supervised
methods tend to be overfitted on their training dataset. This means that
applying the same framework to new data with different imaging setups and
mutant types can severely decrease performance. We have developed a Zebrafish
Automatic Cardiovascular Assessment Framework (ZACAF) to quantify the cardiac
function in zebrafish. In this work, we further applied data augmentation,
Transfer Learning (TL), and Test Time Augmentation (TTA) to ZACAF to improve
the performance for the quantification of cardiovascular function
quantification in zebrafish. This strategy can be integrated with the available
frameworks to aid other researchers. We demonstrate that using TL, even with a
constrained dataset, the model can be refined to accommodate a novel microscope
setup, encompassing diverse mutant types and accommodating various video
recording protocols. Additionally, as users engage in successive rounds of TL,
the model is anticipated to undergo substantial enhancements in both
generalizability and accuracy. Finally, we applied this approach to assess the
cardiovascular function in nrap mutant zebrafish, a model of cardiomyopathy.
Related papers
- Decomposing the Neurons: Activation Sparsity via Mixture of Experts for Continual Test Time Adaptation [37.79819260918366]
Continual Test-Time Adaptation (CTTA) aims to adapt the pre-trained model to ever-evolving target domains.
We explore the integration of a Mixture-of-Activation-Sparsity-Experts (MoASE) as an adapter for the CTTA task.
arXiv Detail & Related papers (2024-05-26T08:51:39Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - PACMAN: a framework for pulse oximeter digit detection and reading in a
low-resource setting [0.42897826548373363]
In light of the COVID-19 pandemic, patients were required to manually input their daily oxygen saturation (SpO2) and pulse rate (PR) values into a health monitoring system.
Several studies attempted to detect the physiological value from the captured image using optical character recognition (OCR)
This study aimed to propose a novel framework called PACMAN with a low-resource deep learning-based computer vision.
arXiv Detail & Related papers (2022-12-09T16:22:28Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms.
We present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach.
arXiv Detail & Related papers (2022-11-12T05:39:17Z) - Adapting the Mean Teacher for keypoint-based lung registration under
geometric domain shifts [75.51482952586773]
deep neural networks generally require plenty of labeled training data and are vulnerable to domain shifts between training and test data.
We present a novel approach to geometric domain adaptation for image registration, adapting a model from a labeled source to an unlabeled target domain.
Our method consistently improves on the baseline model by 50%/47% while even matching the accuracy of models trained on target data.
arXiv Detail & Related papers (2022-07-01T12:16:42Z) - DLTTA: Dynamic Learning Rate for Test-time Adaptation on Cross-domain
Medical Images [56.72015587067494]
We propose a novel dynamic learning rate adjustment method for test-time adaptation, called DLTTA.
Our method achieves effective and fast test-time adaptation with consistent performance improvement over current state-of-the-art test-time adaptation methods.
arXiv Detail & Related papers (2022-05-27T02:34:32Z) - Encoding Cardiopulmonary Exercise Testing Time Series as Images for
Classification using Convolutional Neural Network [9.227037203895533]
Exercise testing has been available for more than a half-century and is a versatile tool for diagnostic and prognostic information of patients for a range of diseases.
In this work, we encode the time series as images using the Gramian Angular Field and Markov Transition Field.
We use it with a convolutional neural network and attention pooling approach for the classification of heart failure and metabolic syndrome patients.
arXiv Detail & Related papers (2022-04-26T16:49:06Z) - A Temporal Learning Approach to Inpainting Endoscopic Specularities and
Its effect on Image Correspondence [13.25903945009516]
We propose using a temporal generative adversarial network (GAN) to inpaint the hidden anatomy under specularities.
This is achieved using in-vivo data of gastric endoscopy (Hyper-Kvasir) in a fully unsupervised manner.
We also assess the effect of our method in computer vision tasks that underpin 3D reconstruction and camera motion estimation.
arXiv Detail & Related papers (2022-03-31T13:14:00Z) - The Way to my Heart is through Contrastive Learning: Remote
Photoplethysmography from Unlabelled Video [10.479541955106328]
The ability to reliably estimate physiological signals from video is a powerful tool in low-cost, pre-clinical health monitoring.
We propose a new approach to remote photoplethysmography (r) - the measurement of blood volume changes from observations of a person's face or skin.
arXiv Detail & Related papers (2021-11-18T15:21:33Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability.
A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction.
We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.
arXiv Detail & Related papers (2021-05-18T10:15:17Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.