Motion-enhancement to Echocardiography Segmentation via Inserting a Temporal Attention Module: An Efficient, Adaptable, and Scalable Approach
- URL: http://arxiv.org/abs/2501.14929v1
- Date: Fri, 24 Jan 2025 21:35:24 GMT
- Title: Motion-enhancement to Echocardiography Segmentation via Inserting a Temporal Attention Module: An Efficient, Adaptable, and Scalable Approach
- Authors: Md. Kamrul Hasan, Guang Yang, Choon Hwai Yap,
- Abstract summary: We present a novel, computation-efficient alternative where a temporal attention module extracts feature interactions multiple times.
The module can be seamlessly integrated into a wide range of existing CNN- or Transformer-based networks.
Our results confirm TAM's robustness, scalability, and generalizability across diverse datasets and backbones.
- Score: 4.923733944174007
- License:
- Abstract: Cardiac anatomy segmentation is essential for clinical assessment of cardiac function and disease diagnosis to inform treatment and intervention. In performing segmentation, deep learning (DL) algorithms improved accuracy significantly compared to traditional image processing approaches. More recently, studies showed that enhancing DL segmentation with motion information can further improve it. A range of methods for injecting motion information has been proposed, but many of them increase the dimensionality of input images (which is computationally expensive) or have not used an optimal method to insert motion information, such as non-DL registration, non-attention-based networks or single-headed attention. Here, we present a novel, computation-efficient alternative where a novel, scalable temporal attention module (TAM) extracts temporal feature interactions multiple times and where TAM has a multi-headed, KQV projection cross-attention architecture. The module can be seamlessly integrated into a wide range of existing CNN- or Transformer-based networks, providing novel flexibility for inclusion in future implementations. Extensive evaluations on different cardiac datasets, 2D echocardiography (CAMUS), and 3D echocardiography (MITEA) demonstrate the model's effectiveness when integrated into well-established backbone networks like UNet, FCN8s, UNetR, SwinUNetR, and the recent I2UNet. We further find that the optimized TAM-enhanced FCN8s network performs well compared to contemporary alternatives. Our results confirm TAM's robustness, scalability, and generalizability across diverse datasets and backbones.
Related papers
- Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - CV-Attention UNet: Attention-based UNet for 3D Cerebrovascular Segmentation of Enhanced TOF-MRA Images [2.2265536092123006]
We propose the 3D cerebrovascular attention UNet method, named CV-AttentionUNet, for precise extraction of brain vessel images.
To combine the low and high semantics, we applied the attention mechanism.
We believe that the novelty of this algorithm lies in its ability to perform well on both labeled and unlabeled data.
arXiv Detail & Related papers (2023-11-16T22:31:05Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - RetiFluidNet: A Self-Adaptive and Multi-Attention Deep Convolutional
Network for Retinal OCT Fluid Segmentation [3.57686754209902]
Quantification of retinal fluids is necessary for OCT-guided treatment management.
New convolutional neural architecture named RetiFluidNet is proposed for multi-class retinal fluid segmentation.
Model benefits from hierarchical representation learning of textural, contextual, and edge features.
arXiv Detail & Related papers (2022-09-26T07:18:00Z) - Large-Kernel Attention for 3D Medical Image Segmentation [14.76728117630242]
In this paper, a novel large- kernel (LK) attention module is proposed to achieve accurate multi-organ segmentation and tumor segmentation.
The advantages of convolution and self-attention are combined in the proposed LK attention module, including local contextual information, long-range dependence, and channel adaptation.
The module also decomposes the LK convolution to optimize the computational cost and can be easily incorporated into FCNs such as U-Net.
arXiv Detail & Related papers (2022-07-19T16:32:55Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
We propose a shape-aware relation network for accurate and real-time landmark detection in endoscopic submucosal dissection surgery.
We first devise an algorithm to automatically generate relation keypoint heatmaps, which intuitively represent the prior knowledge of spatial relations among landmarks.
We then develop two complementary regularization schemes to progressively incorporate the prior knowledge into the training process.
arXiv Detail & Related papers (2021-11-08T07:57:30Z) - DFENet: A Novel Dimension Fusion Edge Guided Network for Brain MRI
Segmentation [0.0]
We propose a novel Dimension Fusion Edge-guided network (DFENet) that can meet both of these requirements by fusing the features of 2D and 3D CNNs.
The proposed model is robust, accurate, superior to the existing methods, and can be relied upon for biomedical applications.
arXiv Detail & Related papers (2021-05-17T15:43:59Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z) - Learning Tubule-Sensitive CNNs for Pulmonary Airway and Artery-Vein
Segmentation in CT [45.93021999366973]
Training convolutional neural networks (CNNs) for segmentation of pulmonary airway, artery, and vein is challenging.
We present a CNNs-based method for accurate airway and artery-vein segmentation in non-contrast computed tomography.
It enjoys superior sensitivity to tenuous peripheral bronchioles, arterioles, and venules.
arXiv Detail & Related papers (2020-12-10T15:56:08Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Heart Sound Segmentation using Bidirectional LSTMs with Attention [37.62160903348547]
We propose a novel framework for the segmentation of phonocardiogram (PCG) signals into heart states.
We exploit recent advancements in attention based learning to segment the PCG signal.
The proposed method attains state-of-the-art performance on multiple benchmarks including both human and animal heart recordings.
arXiv Detail & Related papers (2020-04-02T02:09:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.