論文の概要: Best Arm Identification for Prompt Learning under a Limited Budget
- arxiv url: http://arxiv.org/abs/2402.09723v1
- Date: Thu, 15 Feb 2024 05:31:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-16 16:50:51.973161
- Title: Best Arm Identification for Prompt Learning under a Limited Budget
- Title(参考訳): 限られた予算下でのプロンプト学習のためのベストアーム識別
- Authors: Chengshuai Shi, Kun Yang, Jing Yang and Cong Shen
- Abstract要約: この作業は、有限予算制約を即時学習に明示的に組み込む。
BAI-FBの能力を体系的に学習するための一般的な枠組みが提案されている。
GPT 3.5とLlama2を併用した複数の順応タスクの実験は、TRIPLEを以前のベースラインよりも大幅に改善したことを示している。
- 参考スコア(独自算出の注目度): 19.369973418239205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The remarkable instruction-following capability of large language models
(LLMs) has sparked a growing interest in automatically learning suitable
prompts. However, while many effective methods have been proposed, the cost
incurred during the learning process (e.g., accessing LLM and evaluating the
responses) has not been considered. To overcome this limitation, this work
explicitly incorporates a finite budget constraint into prompt learning.
Towards developing principled solutions, a novel connection is established
between prompt learning and fixed-budget best arm identification (BAI-FB) in
multi-armed bandits (MAB). Based on this connection, a general framework TRIPLE
(besT aRm Identification for Prompt LEarning) is proposed to harness the power
of BAI-FB in prompt learning systematically. Unique characteristics of prompt
learning further lead to two embedding-based enhancements of TRIPLE by
exploiting the ideas of clustering and function approximation. Extensive
experiments on multiple well-adopted tasks using both GPT 3.5 and Llama2
demonstrate the significant performance improvement of TRIPLE over the previous
baselines while satisfying the limited budget constraints.
- Abstract(参考訳): 大きな言語モデル(LLM)の驚くべき命令追従能力は、適切なプロンプトを自動的に学習することへの関心を高めている。
しかし、多くの効果的な手法が提案されているが、学習プロセス中に発生するコスト(例えば、llmへのアクセスと応答の評価)は考慮されていない。
この制限を克服するために、この研究は、有限予算制約を即時学習に明示的に組み込む。
原則的ソリューションの開発に向けて,マルチアームバンディット(MAB)における即時学習と固定予算ベストアーム識別(BAI-FB)の新たな接続を確立する。
この関係に基づいて,BAI-FBの力を利用して,システム的に学習する汎用フレームワークTRIPLE(BesT aRm Identification for Prompt LEarning)を提案する。
プロンプト学習のユニークな特徴は、クラスタリングと関数近似のアイデアを活用し、2つの組込みに基づくtripleの拡張に繋がる。
GPT 3.5 と Llama2 を併用した複数の順調なタスクに対する大規模な実験は、制限された予算制約を満たすとともに、以前のベースラインよりもTRIPLE の大幅な性能向上を示した。
関連論文リスト
- AMPO: Automatic Multi-Branched Prompt Optimization [43.586044739174646]
本稿では,障害事例をフィードバックとして多分岐プロンプトを反復的に開発する自動プロンプト最適化手法AMPOを提案する。
5つのタスクにわたる実験では、AMPOが常に最良の結果を達成する。
論文 参考訳(メタデータ) (2024-10-11T10:34:28Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
クエリ依存型プロンプト最適化(QPO)を導入し、入力クエリに合わせて最適なプロンプトを生成するために、小さな事前訓練された言語モデルを反復的に微調整する。
我々は、オープンソースのタスクに様々なプロンプトをベンチマークする副産物として、すでに大量に存在するオフラインのプロンプトデータから洞察を得る。
様々なLLMスケールと多様なNLPおよび数学タスクの実験は、ゼロショットと少数ショットの両方のシナリオにおいて、我々の手法の有効性とコスト効率を実証している。
論文 参考訳(メタデータ) (2024-08-20T03:06:48Z) - Training Greedy Policy for Proposal Batch Selection in Expensive Multi-Objective Combinatorial Optimization [52.80408805368928]
本稿では,バッチ取得のための新しいグリーディ型サブセット選択アルゴリズムを提案する。
赤蛍光タンパク質に関する実験により,提案手法は1.69倍少ないクエリでベースライン性能を達成できることが判明した。
論文 参考訳(メタデータ) (2024-06-21T05:57:08Z) - Prompt Optimization with EASE? Efficient Ordering-aware Automated Selection of Exemplars [66.823588073584]
大規模言語モデル(LLM)は、現実世界のアプリケーションで印象的な機能を示している。
これらの卓越した作品の品質は、パフォーマンスに大きな影響を与えます。
既存の方法は、先行注文がパフォーマンスに与える影響を適切に説明できない。
論文 参考訳(メタデータ) (2024-05-25T08:23:05Z) - PhaseEvo: Towards Unified In-Context Prompt Optimization for Large
Language Models [9.362082187605356]
本稿では、LLMの生成能力と進化アルゴリズムのグローバル検索能力を組み合わせた効率的な自動プロンプト最適化フレームワークであるPhaseEvoについて述べる。
PhaseEvoは、優れた効率を維持しながら、最先端のベースライン手法を大きなマージンで大幅に上回っている。
論文 参考訳(メタデータ) (2024-02-17T17:47:10Z) - Cost-Effective In-Context Learning for Entity Resolution: A Design Space
Exploration [26.65259285701739]
本稿では,ERに対する費用対効果のあるバッチプロンプト手法の開発方法について,総合的研究を行う。
PLMに基づく手法と比較して,バッチプロンプトはERにとって非常に費用対効果が高いことが判明した。
また,マッチング精度と金銭的コストのバランスを効果的に整えるための包括的実証選択戦略も考案した。
論文 参考訳(メタデータ) (2023-12-07T02:09:27Z) - Query-Dependent Prompt Evaluation and Optimization with Offline Inverse
RL [62.824464372594576]
ゼロショットプロンプト最適化により,Large Language Models (LLM) の算術的推論能力を向上させることを目的とする。
このような最適化では、以前見過ごされたクエリ依存の目的を特定します。
本稿では、オフライン逆強化学習を利用して、実演データから洞察を引き出すPrompt-OIRLを紹介する。
論文 参考訳(メタデータ) (2023-09-13T01:12:52Z) - Robust Prompt Optimization for Large Language Models Against
Distribution Shifts [80.6757997074956]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて重要な能力を示している。
本稿では,LLMの分散シフトに対するロバストな最適化法を提案する。
この問題は、ラベル付けされたソースグループに最適化されたプロンプトを同時にラベル付けされていないターゲットグループに一般化する必要がある。
論文 参考訳(メタデータ) (2023-05-23T11:30:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。