EFUF: Efficient Fine-grained Unlearning Framework for Mitigating Hallucinations in Multimodal Large Language Models
- URL: http://arxiv.org/abs/2402.09801v2
- Date: Mon, 24 Jun 2024 00:50:58 GMT
- Title: EFUF: Efficient Fine-grained Unlearning Framework for Mitigating Hallucinations in Multimodal Large Language Models
- Authors: Shangyu Xing, Fei Zhao, Zhen Wu, Tuo An, Weihao Chen, Chunhui Li, Jianbing Zhang, Xinyu Dai,
- Abstract summary: We propose an efficient fine-grained unlearning framework (EFUF) to eliminate hallucinations without paired data.
Our method consistently reduces hallucinations while preserving the generation quality with modest computational overhead.
- Score: 27.679307570206937
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal large language models (MLLMs) have attracted increasing attention in the past few years, but they may still generate descriptions that include objects not present in the corresponding images, a phenomenon known as object hallucination. To eliminate hallucinations, existing methods manually annotate paired responses with and without hallucinations, and then employ various alignment algorithms to improve the alignment capability between images and text. However, they not only demand considerable computation resources during the finetuning stage but also require expensive human annotation to construct paired data needed by the alignment algorithms. To address these issues, we borrow the idea of unlearning and propose an efficient fine-grained unlearning framework (EFUF), which can eliminate hallucinations without the need for paired data. Extensive experiments show that our method consistently reduces hallucinations while preserving the generation quality with modest computational overhead. Our code and datasets will be publicly available.
Related papers
- HELPD: Mitigating Hallucination of LVLMs by Hierarchical Feedback Learning with Vision-enhanced Penalty Decoding [36.360171373963716]
Large Vision-Language Models (LVLMs) have shown remarkable performance on many visual-language tasks.
These models still suffer from multimodal hallucination, which means the generation of objects or content that violates the images.
We propose Hierarchical Feedback Learning with Vision-enhanced Penalty Decoding (HELPD) to address this issue.
arXiv Detail & Related papers (2024-09-30T15:52:05Z) - ANAH-v2: Scaling Analytical Hallucination Annotation of Large Language Models [65.12177400764506]
Large language models (LLMs) exhibit hallucinations in long-form question-answering tasks across various domains and wide applications.
Current hallucination detection and mitigation datasets are limited in domains and sizes.
This paper introduces an iterative self-training framework that simultaneously and progressively scales up the hallucination annotation dataset.
arXiv Detail & Related papers (2024-07-05T17:56:38Z) - Detecting and Mitigating Hallucination in Large Vision Language Models via Fine-Grained AI Feedback [48.065569871444275]
We propose detecting and mitigating hallucinations in Large Vision Language Models (LVLMs) via fine-grained AI feedback.
We generate a small-size hallucination annotation dataset by proprietary models.
Then, we propose a detect-then-rewrite pipeline to automatically construct preference dataset for training hallucination mitigating model.
arXiv Detail & Related papers (2024-04-22T14:46:10Z) - Hallucination Diversity-Aware Active Learning for Text Summarization [46.00645048690819]
Large Language Models (LLMs) have shown propensity to generate hallucinated outputs, i.e., texts that are factually incorrect or unsupported.
Existing methods for alleviating hallucinations typically require costly human annotations to identify and correct hallucinations in LLM outputs.
We propose the first active learning framework to alleviate LLM hallucinations, reducing costly human annotations of hallucination needed.
arXiv Detail & Related papers (2024-04-02T02:30:27Z) - Aligning Modalities in Vision Large Language Models via Preference
Fine-tuning [67.62925151837675]
In this work, we frame the hallucination problem as an alignment issue, tackle it with preference tuning.
Specifically, we propose POVID to generate feedback data with AI models.
We use ground-truth instructions as the preferred response and a two-stage approach to generate dispreferred data.
In experiments across broad benchmarks, we show that we can not only reduce hallucinations, but improve model performance across standard benchmarks, outperforming prior approaches.
arXiv Detail & Related papers (2024-02-18T00:56:16Z) - HalluciDoctor: Mitigating Hallucinatory Toxicity in Visual Instruction Data [102.56792377624927]
hallucinations inherent in machine-generated data remain under-explored.
We present a novel hallucination detection and elimination framework, HalluciDoctor, based on the cross-checking paradigm.
Our method successfully mitigates 44.6% hallucinations relatively and maintains competitive performance compared to LLaVA.
arXiv Detail & Related papers (2023-11-22T04:52:58Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
This paper introduces a method for automatically constructing model-specific hallucination datasets based on existing fact-checking datasets called AutoHall.
We also propose a zero-resource and black-box hallucination detection method based on self-contradiction.
arXiv Detail & Related papers (2023-09-30T05:20:02Z) - Reducing Hallucinations in Neural Machine Translation with Feature
Attribution [54.46113444757899]
We present a case study focusing on model understanding and regularisation to reduce hallucinations in NMT.
We first use feature attribution methods to study the behaviour of an NMT model that produces hallucinations.
We then leverage these methods to propose a novel loss function that substantially helps reduce hallucinations and does not require retraining the model from scratch.
arXiv Detail & Related papers (2022-11-17T20:33:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.