論文の概要: Utilizing GANs for Fraud Detection: Model Training with Synthetic
Transaction Data
- arxiv url: http://arxiv.org/abs/2402.09830v1
- Date: Thu, 15 Feb 2024 09:48:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-16 16:18:10.335139
- Title: Utilizing GANs for Fraud Detection: Model Training with Synthetic
Transaction Data
- Title(参考訳): gansを用いた不正検出:合成トランザクションデータを用いたモデルトレーニング
- Authors: Mengran Zhu, Yulu Gong, Yafei Xiang, Hanyi Yu, Shuning Huo
- Abstract要約: 本稿では,GAN(Generative Adversarial Networks)の不正検出への応用について検討する。
GANは複雑なデータ分散のモデリングにおいて有望であり、異常検出のための効果的なツールである。
この研究は、ディープラーニング技術によるトランザクションセキュリティの強化におけるGANの可能性を実証している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Anomaly detection is a critical challenge across various research domains,
aiming to identify instances that deviate from normal data distributions. This
paper explores the application of Generative Adversarial Networks (GANs) in
fraud detection, comparing their advantages with traditional methods. GANs, a
type of Artificial Neural Network (ANN), have shown promise in modeling complex
data distributions, making them effective tools for anomaly detection. The
paper systematically describes the principles of GANs and their derivative
models, emphasizing their application in fraud detection across different
datasets. And by building a collection of adversarial verification graphs, we
will effectively prevent fraud caused by bots or automated systems and ensure
that the users in the transaction are real. The objective of the experiment is
to design and implement a fake face verification code and fraud detection
system based on Generative Adversarial network (GANs) algorithm to enhance the
security of the transaction process.The study demonstrates the potential of
GANs in enhancing transaction security through deep learning techniques.
- Abstract(参考訳): 異常検出は、通常のデータ分布から逸脱するインスタンスを特定することを目的として、さまざまな研究領域において重要な課題である。
本稿では,GAN(Generative Adversarial Networks)の不正検出への応用について,従来の手法と比較して検討する。
ANN(Artificial Neural Network)の一種であるGANは、複雑なデータ分散をモデル化し、異常検出に有効なツールであることを示す。
論文はganとその派生モデルの原理を体系的に記述し、異なるデータセットにわたる不正検出への応用を強調した。
そして、敵対的な検証グラフのコレクションを構築することで、ボットや自動化システムによる不正行為を効果的に防止し、トランザクションのユーザが本物であることを保証します。
本研究の目的は,GAN(Generative Adversarial Network)アルゴリズムに基づく偽の顔認証コードと不正検出システムを設計,実装し,トランザクションプロセスの安全性を高めることであり,深層学習技術によるトランザクションセキュリティ向上におけるGANの可能性を示す。
関連論文リスト
- Detection of AI Deepfake and Fraud in Online Payments Using GAN-Based Models [3.2510005425417523]
本研究では,GAN(Generative Adversarial Networks)を用いて,オンライン決済システムにおけるAIディープフェイクや不正行為を検出する。
支払い画像の微妙な操作を識別することで、オンライン決済のセキュリティを高める新しいGANモデルを提案する。
論文 参考訳(メタデータ) (2025-01-13T03:10:54Z) - CryptoFormalEval: Integrating LLMs and Formal Verification for Automated Cryptographic Protocol Vulnerability Detection [41.94295877935867]
我々は,新たな暗号プロトコルの脆弱性を自律的に識別する大規模言語モデルの能力を評価するためのベンチマークを導入する。
私たちは、新しい、欠陥のある通信プロトコルのデータセットを作成し、AIエージェントが発見した脆弱性を自動的に検証する方法を設計しました。
論文 参考訳(メタデータ) (2024-11-20T14:16:55Z) - Enhancing Network Intrusion Detection Performance using Generative Adversarial Networks [0.25163931116642785]
GAN(Generative Adversarial Networks)の統合によるNIDSの性能向上のための新しいアプローチを提案する。
GANは、現実世界のネットワークの振る舞いを忠実に模倣する合成ネットワークトラフィックデータを生成する。
NIDSへのGANの統合は,訓練データに制限のある攻撃に対する侵入検知性能の向上につながる可能性が示唆された。
論文 参考訳(メタデータ) (2024-04-11T04:01:15Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Transaction Fraud Detection via Spatial-Temporal-Aware Graph Transformer [5.043422340181098]
本稿では,トランザクション不正検出問題に対する空間時間認識グラフ変換器(STA-GT)と呼ばれる新しいグラフニューラルネットワークを提案する。
具体的には、時間的依存関係を捕捉し、それをグラフニューラルネットワークフレームワークに組み込むための時間的符号化戦略を設計する。
ローカルおよびグローバルな情報を学ぶためのトランスフォーマーモジュールを導入する。
論文 参考訳(メタデータ) (2023-07-11T08:56:53Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
本稿では,アダプティブサンプリングとアグリゲーションに基づくグラフニューラルネットワーク(ASA-GNN)を提案する。
ノイズの多いノードをフィルタリングし、不正なノードを補うために、隣のサンプリング戦略を実行する。
3つのファイナンシャルデータセットの実験により,提案手法のASA-GNNは最先端のデータセットよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-07-11T07:48:39Z) - Leveraging a Probabilistic PCA Model to Understand the Multivariate
Statistical Network Monitoring Framework for Network Security Anomaly
Detection [64.1680666036655]
確率的生成モデルの観点からPCAに基づく異常検出手法を再検討する。
2つの異なるデータセットを用いて数学的モデルを評価した。
論文 参考訳(メタデータ) (2023-02-02T13:41:18Z) - Using EBGAN for Anomaly Intrusion Detection [13.155954231596434]
ネットワークレコードを通常のトラフィックまたは悪意のあるトラフィックに分類するEBGANベースの侵入検知手法であるIDS-EBGANを提案する。
IDS-EBGANのジェネレータは、トレーニングセット内の元の悪意のあるネットワークトラフィックを、敵対的な悪意のある例に変換する責任がある。
テスト中、IDS-EBGANは識別器の再構成誤差を使用してトラフィックレコードを分類する。
論文 参考訳(メタデータ) (2022-06-21T13:49:34Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
スーパーアプリケーションの金融サービスにおける不正行為防止のための関係グラフ畳み込みネットワーク手法の枠組みを提案する。
我々は,グラフニューラルネットワークの解釈可能性アルゴリズムを用いて,ユーザの分類タスクに対する最も重要な関係を判定する。
以上の結果から,Super-Appの代替データと高接続性で得られるインタラクションを利用するモデルには,付加価値があることが示唆された。
論文 参考訳(メタデータ) (2021-07-29T00:02:06Z) - Anomaly Detection by One Class Latent Regularized Networks [36.67420338535258]
近年,GANに基づく半教師付きジェネレーティブ・アドバイザリアル・ネットワーク(GAN)手法が,異常検出タスクで人気を集めている。
遅延特徴空間でトレーニングデータの基盤となる構造を捕捉する新しい対角デュアルオートエンコーダネットワークを提案する。
実験の結果,MNISTおよびCIFAR10データセットおよびGTSRB停止信号データセットの最先端結果が得られた。
論文 参考訳(メタデータ) (2020-02-05T02:21:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。