論文の概要: A Deep Learning Approach to Radar-based QPE
- arxiv url: http://arxiv.org/abs/2402.09846v1
- Date: Thu, 15 Feb 2024 10:05:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-16 16:01:42.002884
- Title: A Deep Learning Approach to Radar-based QPE
- Title(参考訳): レーダベースQPEの深層学習手法
- Authors: Ting-Shuo Yo, Shih-Hao Su, Jung-Lien Chu, Chiao-Wei Chang, and
Hung-Chi Kuo
- Abstract要約: マルチプルセンサ(QPESUMS)モザイクレーダデータセットを用いた量的降水量推定と分別に基づく量的降水量推定(QPE)のためのボリューム・ツー・ポイント・フレームワークを提案する。
台湾地域における格子状レーダー反射率の時系列データ量を用いて,気象観測所におけるQPEの統計モデルを構築するために,機械学習アルゴリズムを用いた。
- 参考スコア(独自算出の注目度): 0.11184789007828977
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this study, we propose a volume-to-point framework for quantitative
precipitation estimation (QPE) based on the Quantitative Precipitation
Estimation and Segregation Using Multiple Sensor (QPESUMS) Mosaic Radar data
set. With a data volume consisting of the time series of gridded radar
reflectivities over the Taiwan area, we used machine learning algorithms to
establish a statistical model for QPE in weather stations. The model extracts
spatial and temporal features from the input data volume and then associates
these features with the location-specific precipitations. In contrast to QPE
methods based on the Z-R relation, we leverage the machine learning algorithms
to automatically detect the evolution and movement of weather systems and
associate these patterns to a location with specific topographic attributes.
Specifically, we evaluated this framework with the hourly precipitation data of
45 weather stations in Taipei during 2013-2016. In comparison to the
operational QPE scheme used by the Central Weather Bureau, the volume-to-point
framework performed comparably well in general cases and excelled in detecting
heavy-rainfall events. By using the current results as the reference benchmark,
the proposed method can integrate the heterogeneous data sources and
potentially improve the forecast in extreme precipitation scenarios.
- Abstract(参考訳): 本研究では,マルチプルセンサ(QPESUMS)モザイクレーダデータセットを用いた量的降水量推定と分別に基づく量的降水量推定(QPE)のためのボリューム・ツー・ポイント・フレームワークを提案する。
台湾地域における格子状レーダー反射率の時系列データ量を用いて,気象観測所におけるQPEの統計モデルを構築するために,機械学習アルゴリズムを用いた。
このモデルは、入力データボリュームから空間的および時間的特徴を抽出し、それらの特徴を位置固有の降水と関連付ける。
z-r関係に基づくqpe法とは対照的に,機械学習アルゴリズムを用いて気象システムの進化と移動を自動的に検出し,それらのパターンを特定の地形属性に関連付ける。
具体的には,2013-2016年に台北の気象観測所45箇所の降水量データを用いて,この枠組みを評価した。
中央気象局が実施した運用QPE方式と比較して,一般的な場合において,ボリューム・ツー・ポイント・フレームワークは良好に動作し,重雨の観測に優れていた。
提案手法は,基準ベンチマークとして現在の結果を用いることで,異種データソースを統合し,極端な降水シナリオにおける予測を改善することができる。
関連論文リスト
- WeatherReal: A Benchmark Based on In-Situ Observations for Evaluating Weather Models [11.016845506758841]
我々は,地球近傍の地表面観測から得られた気象予報のための新しいベンチマークデータセットであるWeatherRealを紹介する。
本稿では,データセットの基盤となる情報源と処理手法を詳述するとともに,超局地的・極端な気象観測におけるその場観測の利点について述べる。
私たちの研究は、AIベースの天気予報研究を、よりアプリケーション中心で運用対応のアプローチへと進めることを目的としています。
論文 参考訳(メタデータ) (2024-09-14T08:53:46Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
我々は、TBN Granger Causalityという概念的微粒因果モデルを設計する。
次に, TBN Granger Causality を生成的に発見する TacSas という, エンドツーエンドの深部生成モデルを提案する。
気候予報のための気候指標ERA5と、極度気象警報のためのNOAAの極端気象基準でTacSasを試験する。
論文 参考訳(メタデータ) (2024-08-08T06:47:21Z) - GPTCast: a weather language model for precipitation nowcasting [0.0]
GPTCastは、レーダベースの降雨をアンサンブルする深層学習法である。
我々は、トークン化レーダ画像を用いて降水動態を学習するために、GPTモデルを用いて予測を行う。
論文 参考訳(メタデータ) (2024-07-02T09:25:58Z) - Generative Data Assimilation of Sparse Weather Station Observations at Kilometer Scales [5.453657018459705]
そこで本研究では,現実的に複雑な1kmスケールの気象条件下でのスコアベースデータ同化の実現可能性を示す。
40の気象観測所からの観測を取り入れることで、左の観測所で10%低いRMSEが達成される。
ますます野心的な地域国家ジェネレータと、In situ、地上ベース、衛星リモートセンシングデータストリームの集合を組み合わす拡張を探求する時期だ。
論文 参考訳(メタデータ) (2024-06-19T10:28:11Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - Short-term Precipitation Forecasting in The Netherlands: An Application
of Convolutional LSTM neural networks to weather radar data [0.0]
この研究は、空間パターン認識のための畳み込みニューラルネットワーク(CNN)層と、時間的シーケンスをモデル化するためのLSTMネットワーク層を組み合わせたものである。
このモデルはオランダの気象レーダーデータに基づいて訓練され、検証された。
その結果,降水運動の方向と強度の予測には高い精度が得られた。
論文 参考訳(メタデータ) (2023-12-02T18:13:45Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
我々は,世界天気予報を迅速かつ高精度に予測するためのディープラーニングベースのシステムであるPangu-Weatherを紹介する。
初めてAIベースの手法が、最先端の数値天気予報法(NWP)を精度で上回った。
Pangu-Weatherは、極端な天気予報や大規模なアンサンブル予測など、幅広い下流予測シナリオをサポートしている。
論文 参考訳(メタデータ) (2022-11-03T17:19:43Z) - Physics Informed Shallow Machine Learning for Wind Speed Prediction [66.05661813632568]
イタリアの32カ所の標高10mの風速計から観測された大量の風のデータセットを分析した。
我々は、過去の風の履歴を用いて教師あり学習アルゴリズムを訓練し、その価値を将来予測する。
最適設計と性能は場所によって異なることがわかった。
論文 参考訳(メタデータ) (2022-04-01T14:55:10Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。