論文の概要: Short-term Precipitation Forecasting in The Netherlands: An Application
of Convolutional LSTM neural networks to weather radar data
- arxiv url: http://arxiv.org/abs/2312.01197v1
- Date: Sat, 2 Dec 2023 18:13:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-05 18:43:44.245943
- Title: Short-term Precipitation Forecasting in The Netherlands: An Application
of Convolutional LSTM neural networks to weather radar data
- Title(参考訳): オランダにおける短期降水予測:畳み込みLSTMニューラルネットワークの気象レーダーデータへの適用
- Authors: Petros Demetrakopoulos
- Abstract要約: この研究は、空間パターン認識のための畳み込みニューラルネットワーク(CNN)層と、時間的シーケンスをモデル化するためのLSTMネットワーク層を組み合わせたものである。
このモデルはオランダの気象レーダーデータに基づいて訓練され、検証された。
その結果,降水運動の方向と強度の予測には高い精度が得られた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work addresses the challenge of short-term precipitation forecasting by
applying Convolutional Long Short-Term Memory (ConvLSTM) neural networks to
weather radar data from the Royal Netherlands Meteorological Institute (KNMI).
The research exploits the combination of Convolutional Neural Networks (CNNs)
layers for spatial pattern recognition and LSTM network layers for modelling
temporal sequences, integrating these strengths into a ConvLSTM architecture.
The model was trained and validated on weather radar data from the Netherlands.
The model is an autoencoder consisting of nine layers, uniquely combining
convolutional operations with LSTMs temporal processing, enabling it to capture
the movement and intensity of precipitation systems. The training set comprised
of sequences of radar images, with the model being tasked to predict
precipitation patterns 1.5 hours ahead using the preceding data. Results
indicate high accuracy in predicting the direction and intensity of
precipitation movements. The findings of this study underscore the significant
potential of ConvLSTM networks in meteorological forecasting, particularly in
regions with complex weather patterns. It contributes to the field by offering
a more accurate, data-driven approach to weather prediction, highlighting the
broader applicability of ConvLSTM networks in meteorological tasks.
- Abstract(参考訳): 本研究では,オランダ王立気象研究所(KNMI)の気象レーダデータに畳み込み長短期記憶(ConvLSTM)ニューラルネットワークを適用することで,短期降水予測の課題に対処する。
この研究は、空間パターン認識のための畳み込みニューラルネットワーク(CNN)層と、時間列をモデル化するためのLSTMネットワーク層を組み合わせて、これらの強みをConvLSTMアーキテクチャに統合する。
このモデルはオランダの気象レーダーデータに基づいて訓練され検証された。
このモデルは9層からなるオートエンコーダであり、畳み込み操作とLSTMの時間処理を一意に組み合わせ、降水系の運動と強度を捉えることができる。
トレーニングセットはレーダー画像のシーケンスで構成され、前回のデータを用いて降水パターンを1.5時間前に予測する。
その結果,降水運動の方向と強度を予測する精度が高かった。
本研究は,気象予報におけるConvLSTMネットワークの有意な可能性,特に複雑な気象パターンを持つ地域での可能性を裏付けるものである。
これは気象予報に対するより正確でデータ駆動のアプローチを提供することで、気象学的なタスクにおけるConvLSTMネットワークの適用性を強調している。
関連論文リスト
- Neural Networks with LSTM and GRU in Modeling Active Fires in the Amazon [0.0]
本研究は,ブラジルのアマゾンにあるAQUA_M-T衛星によって検出された活動点の歴史的時系列をモデル化し,予測するための包括的方法論を提案する。
このアプローチでは、Long Short-Term Memory(LSTM)とGated Recurrent Unit(GRU)アーキテクチャを組み合わせた混合リカレントニューラルネットワーク(RNN)モデルを採用して、毎日検出されたアクティブファイアスポットの月次蓄積を予測する。
論文 参考訳(メタデータ) (2024-09-04T13:11:59Z) - Advances in Land Surface Model-based Forecasting: A comparative study of LSTM, Gradient Boosting, and Feedforward Neural Network Models as prognostic state emulators [4.852378895360775]
地表面プロセスのシミュレーションによる実験研究の高速化における3つの代理モデルの効率性を評価する。
以上の結果から, LSTMネットワークは, 予測期間を経た平均モデル全体の精度は高いが, 慎重に調整した場合は, 大陸の長距離予測に優れることがわかった。
論文 参考訳(メタデータ) (2024-07-23T13:26:05Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
天気予報は様々な分野において重要な役割を担い、意思決定とリスク管理を推進している。
伝統的な手法は、しばしば気象系の複雑な力学を捉えるのに苦労する。
本稿では,これらの課題に対処し,天気予報の精度を高めるための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T08:00:15Z) - VN-Net: Vision-Numerical Fusion Graph Convolutional Network for Sparse Spatio-Temporal Meteorological Forecasting [12.737085738169164]
VN-Netは、マルチモーダルデータを利用してスパース時間気象予報をより良く扱うためのGCN法を導入する最初の試みである。
VN-Netは、温度、相対湿度、予測のための平均絶対誤差(MAE)と根平均二乗誤差(RMSE)にかなりの差で最先端である。
論文 参考訳(メタデータ) (2024-01-26T12:41:57Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
深層ニューラルネットワークは、気象条件をモデル化するための代替パラダイムを提供する。
MetNet-3は、密度とスパースの両方のデータセンサーから学習し、降水、風、温度、露点を最大24時間前に予測する。
MetNet-3は、それぞれ時間分解能と空間分解能が高く、最大2分と1km、運用遅延は低い。
論文 参考訳(メタデータ) (2023-06-06T07:07:54Z) - Time-to-Green predictions for fully-actuated signal control systems with
supervised learning [56.66331540599836]
本稿では,集約信号とループ検出データを用いた時系列予測フレームワークを提案する。
我々は、最先端の機械学習モデルを用いて、将来の信号位相の持続時間を予測する。
スイスのチューリッヒの信号制御システムから得られた経験的データに基づいて、機械学習モデルが従来の予測手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-08-24T07:50:43Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - Numerical Weather Forecasting using Convolutional-LSTM with Attention
and Context Matcher Mechanisms [10.759556555869798]
本稿では,高解像度気象データを予測するための新しいディープラーニングアーキテクチャを提案する。
我々の気象モデルは,ベースラインの深層学習モデルと比較して,大幅な性能向上を実現している。
論文 参考訳(メタデータ) (2021-02-01T08:30:42Z) - SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet
Architecture [5.28539620288341]
データ駆動型ニューラルネットワークのアプローチにより,正確な降水量を推定できることが示唆された。
オランダ地域の降水マップとフランスのクラウドカバレッジのバイナリ画像を用いて、実際のデータセットに対する我々のアプローチを評価した。
論文 参考訳(メタデータ) (2020-07-08T20:33:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。