論文の概要: Enhancing Large Language Models with Pseudo- and Multisource- Knowledge
Graphs for Open-ended Question Answering
- arxiv url: http://arxiv.org/abs/2402.09911v1
- Date: Thu, 15 Feb 2024 12:20:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-16 15:51:35.345599
- Title: Enhancing Large Language Models with Pseudo- and Multisource- Knowledge
Graphs for Open-ended Question Answering
- Title(参考訳): オープンエンド質問応答のための疑似およびマルチソース知識グラフによる大規模言語モデルの拡張
- Authors: Jiaxiang Liu, Tong Zhou, Yubo Chen, Kang Liu, Jun Zhao
- Abstract要約: Pseudo-Graph GenerationとAtomic Knowledge Verificationを組み合わせたフレームワークを提案する。
ベースラインと比較して、オープンエンド質問に対するROUGE-Lスコアの11.5の最小改善が得られる。
- 参考スコア(独自算出の注目度): 23.88063210973303
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mitigating the hallucinations of Large Language Models (LLMs) and enhancing
them is a crucial task. Although some existing methods employ model
self-enhancement techniques, they fall short of effectively addressing unknown
factual hallucinations. Using Knowledge Graph (KG) enhancement approaches fails
to address the generalization across different KG sources and the enhancement
of open-ended answer questions simultaneously. To tackle these limitations,
there is a framework that combines Pseudo-Graph Generation and Atomic Knowledge
Verification proposed. The enhancement of LLM using KG in an open-ended
question-answering setting is implemented by leveraging the Pseudo-Graph
Generation. Atomic Knowledge Verification utilizes atomic-level knowledge
querying and verification to achieve generalizability under different KG
sources. Compared to the baseline, this approach yields a minimum improvement
of 11.5 in the ROUGE-L score for open-ended questions. For precise questions,
we observe a minimum accuracy improvement of 7.5. Moreover, there is also
demonstration that this framework exhibits generalizability across different KG
sources. In summary, our results pave the way for enhancing LLMs by
incorporating Pseudo- and Multisource-KGs, particularly in the context of
open-ended questions.
- Abstract(参考訳): LLM(Large Language Models)の幻覚を緩和し、それらを強化することが重要な課題である。
既存の手法ではモデル自己啓発技術を採用しているが、未知の事実の幻覚に効果的に対処できないものもある。
知識グラフ(KG)の強化アプローチは、異なるKGソース間の一般化と、オープンな回答質問の強化に同時に対処できない。
これらの制限に対処するため、Pseudo-Graph GenerationとAtomic Knowledge Verificationが提案されているフレームワークがある。
Pseudo-Graph 生成を利用して,KG を用いたオープンエンド質問応答環境における LLM の強化を実現する。
原子知識検証は、原子レベルの知識クエリと検証を利用して、異なるKGソース下での一般化性を実現する。
ベースラインと比較して、オープンエンド質問に対するROUGE-Lスコアの11.5の最小改善が得られる。
正確な質問に対しては、7.5の最小精度の改善を観察する。
さらに、このフレームワークは異なるKGソースにまたがる一般化性を示すという実証もある。
要約すると,本研究は疑似およびマルチソースkgを組み込むことにより,特にオープンエンド質問の文脈において,llmの強化の道を開くものである。
関連論文リスト
- Decoding on Graphs: Faithful and Sound Reasoning on Knowledge Graphs through Generation of Well-Formed Chains [66.55612528039894]
知識グラフ(KG)は質問応答(QA)のための信頼できる知識ソースとして機能する。
我々は、LLMとKGの深い相乗効果を促進する新しいフレームワークであるDoG(Decoding on Graphs)を提案する。
様々なKGQAタスクに対して異なるバックグラウンドKGを用いた実験により、DoGが優れた、堅牢なパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-10-24T04:01:40Z) - Graph-constrained Reasoning: Faithful Reasoning on Knowledge Graphs with Large Language Models [83.28737898989694]
大規模言語モデル(LLM)は知識ギャップと幻覚のために忠実な推論に苦しむ。
グラフ制約推論(GCR)は、KGにおける構造的知識とLLMにおける非構造的推論を橋渡しする新しいフレームワークである。
GCRは最先端のパフォーマンスを達成し、追加のトレーニングをすることなく、見えないKGに対して強力なゼロショット一般化性を示す。
論文 参考訳(メタデータ) (2024-10-16T22:55:17Z) - Comprehending Knowledge Graphs with Large Language Models for Recommender Systems [13.270018897057293]
本稿では,知識認識のための大規模言語モデルを活用したCoLaKGという新しい手法を提案する。
まず、KG から各項目を中心とする部分グラフを抽出し、それらを LLM のテキスト入力に変換する。
LLMはこれらの項目中心のサブグラフの理解を出力し、その後セマンティック埋め込みに変換する。
論文 参考訳(メタデータ) (2024-10-16T04:44:34Z) - Empowering Small-Scale Knowledge Graphs: A Strategy of Leveraging General-Purpose Knowledge Graphs for Enriched Embeddings [3.7759315989669058]
汎用KGを用いた小規模ドメイン固有知識グラフの埋め込みを充実させるフレームワークを提案する。
実験では、Hits@10測定値で最大44%の上昇が観測された。
この比較的探索されていない研究方向は、知識集約的なタスクにおいて、KGのより頻繁な取り込みを触媒することができる。
論文 参考訳(メタデータ) (2024-05-17T12:46:23Z) - Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering [87.67177556994525]
我々は、知識グラフ(KG)を探索しながら、新しい実写トリプルを生成する、Generate-on-Graph(GoG)と呼ばれる学習自由な手法を提案する。
GoGはIKGQAでLLMをエージェントとKGの両方として扱うThinking-Searching-Generatingフレームワークを通じて推論を行う。
論文 参考訳(メタデータ) (2024-04-23T04:47:22Z) - Knowledge Graph Large Language Model (KG-LLM) for Link Prediction [43.55117421485917]
本稿では,知識グラフタスクに大規模言語モデル(LLM)を活用する新しいフレームワークである知識グラフ大言語モデル(KG-LLM)を紹介する。
まず、構造化知識グラフデータを自然言語に変換し、次にこれらの自然言語プロンプトを微調整 LLM に変換する。
KG-LLMフレームワークの有効性を示すため,Flan-T5,LLaMa2,Gemmaの3つのLLMを微調整した。
論文 参考訳(メタデータ) (2024-03-12T04:47:29Z) - ReasoningLM: Enabling Structural Subgraph Reasoning in Pre-trained
Language Models for Question Answering over Knowledge Graph [142.42275983201978]
本稿では,構造化推論を行うためのGNNを模倣するサブグラフ認識型自己認識機構を提案する。
また、モデルパラメータを2万のサブグラフで合成した質問に適応するための適応チューニング戦略も採用する。
実験により、ReasoningLMは、更新されたパラメータが少なく、トレーニングデータが少ない場合でも、最先端のモデルを大きなマージンで上回っていることが示された。
論文 参考訳(メタデータ) (2023-12-30T07:18:54Z) - Mitigating Large Language Model Hallucinations via Autonomous Knowledge
Graph-based Retrofitting [51.7049140329611]
本稿では,知識グラフに基づくリトロフィッティング(KGR)を提案する。
実験により,実QAベンチマークにおいて,KGRはLLMの性能を大幅に向上できることが示された。
論文 参考訳(メタデータ) (2023-11-22T11:08:38Z) - Retrieve-Rewrite-Answer: A KG-to-Text Enhanced LLMs Framework for
Knowledge Graph Question Answering [16.434098552925427]
本稿では,知識グラフ質問応答(KGQA)課題を解決するために,KG拡張言語モデルアプローチについて検討する。
そこで本研究では,KGの知識をテキスト化された文に変換する,応答に敏感なKG-to-Textアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-20T10:42:08Z) - Empowering Language Models with Knowledge Graph Reasoning for Question
Answering [117.79170629640525]
我々はknOwledge ReasOning empowered Language Model (OREO-LM)を提案する。
OREO-LMは、既存のTransformerベースのLMに柔軟に接続できる新しい知識相互作用層で構成されている。
クローズド・ブック・セッティングにおいて,最先端の成果が得られ,性能が著しく向上した。
論文 参考訳(メタデータ) (2022-11-15T18:26:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。