論文の概要: Question-Aware Knowledge Graph Prompting for Enhancing Large Language Models
- arxiv url: http://arxiv.org/abs/2503.23523v1
- Date: Sun, 30 Mar 2025 17:09:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 19:35:57.167653
- Title: Question-Aware Knowledge Graph Prompting for Enhancing Large Language Models
- Title(参考訳): 質問認識型知識グラフによる大規模言語モデルの強化
- Authors: Haochen Liu, Song Wang, Chen Chen, Jundong Li,
- Abstract要約: 本稿では,問合せをGNNアグリゲーションに組み込んでKG関連性を動的に評価するQAP(QA-Aware Knowledge Graph Prompting)を提案する。
実験の結果、QAPは複数のデータセットで最先端の手法よりも優れており、その有効性を強調している。
- 参考スコア(独自算出の注目度): 51.47994645529258
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) often struggle with tasks requiring external knowledge, such as knowledge-intensive Multiple Choice Question Answering (MCQA). Integrating Knowledge Graphs (KGs) can enhance reasoning; however, existing methods typically demand costly fine-tuning or retrieve noisy KG information. Recent approaches leverage Graph Neural Networks (GNNs) to generate KG-based input embedding prefixes as soft prompts for LLMs but fail to account for question relevance, resulting in noisy prompts. Moreover, in MCQA tasks, the absence of relevant KG knowledge for certain answer options remains a significant challenge. To address these issues, we propose Question-Aware Knowledge Graph Prompting (QAP), which incorporates question embeddings into GNN aggregation to dynamically assess KG relevance. QAP employs global attention to capture inter-option relationships, enriching soft prompts with inferred knowledge. Experimental results demonstrate that QAP outperforms state-of-the-art methods across multiple datasets, highlighting its effectiveness.
- Abstract(参考訳): LLM(Large Language Models)は、知識集約型Multiple Choice Question Answering (MCQA)のような、外部知識を必要とするタスクに苦しむことが多い。
知識グラフ(KG)の統合は推論を強化することができるが、既存の手法は通常、ノイズの多いKG情報を取得するのに費用がかかる。
近年のアプローチでは、グラフニューラルネットワーク(GNN)を用いて、LLMのソフトプロンプトとしてKGベースの入力埋め込みプレフィックスを生成するが、問題関連を考慮できないため、ノイズのあるプロンプトが発生する。
さらに、MCQAタスクでは、特定の解答オプションに関する関連するKG知識が欠如していることが大きな課題である。
これらの問題に対処するために,質問文をGNNアグリゲーションに組み込んでKG関連性を動的に評価するQAP(QA-Aware Knowledge Graph Prompting)を提案する。
QAPは、選択肢間の関係を捉え、推論された知識でソフトプロンプトを豊かにする。
実験の結果、QAPは複数のデータセットで最先端の手法よりも優れており、その有効性を強調している。
関連論文リスト
- Knowledge Graph-extended Retrieval Augmented Generation for Question Answering [10.49712834719005]
本稿では,Large Language Models (LLMs) とKGs (KGs) を統合するシステムを提案する。
結果として得られるアプローチは、KGを持つ検索拡張生成(RAG)の特定の形式に分類される。
質問分解モジュールを含み、マルチホップ情報検索と回答可能性を高める。
論文 参考訳(メタデータ) (2025-04-11T18:03:02Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
本稿では,KG(Amar)フレームワーク上での適応型マルチアスペクト検索手法を提案する。
この方法は、エンティティ、リレーション、サブグラフを含む知識を検索し、検索した各テキストを即時埋め込みに変換する。
提案手法は2つの共通データセットに対して最先端の性能を達成した。
論文 参考訳(メタデータ) (2024-12-24T16:38:04Z) - Question-guided Knowledge Graph Re-scoring and Injection for Knowledge Graph Question Answering [27.414670144354453]
KGQAは知識グラフに格納された構造化情報を活用することで自然言語の質問に答える。
本稿では,Q-KGR(Q-Guided Knowledge Graph Re-scoring method)を提案する。
また,大規模言語モデルに再認識された知識グラフを注入するパラメータ効率の高い手法であるKnowformerを導入し,事実推論を行う能力を高める。
論文 参考訳(メタデータ) (2024-10-02T10:27:07Z) - Dual Reasoning: A GNN-LLM Collaborative Framework for Knowledge Graph Question Answering [38.31983923708175]
我々は、知識グラフ(KGs)の明示的推論のために、グラフニューラルネットワーク(GNN)に基づく外部システムを統合する新しいフレームワークであるDual-Reasoningを提案する。
我々は,DualRが高効率と解釈性を維持しつつ,最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2024-06-03T09:38:28Z) - Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering [87.67177556994525]
我々は、知識グラフ(KG)を探索しながら、新しい実写トリプルを生成する、Generate-on-Graph(GoG)と呼ばれる学習自由な手法を提案する。
GoGはIKGQAでLLMをエージェントとKGの両方として扱うThinking-Searching-Generatingフレームワークを通じて推論を行う。
論文 参考訳(メタデータ) (2024-04-23T04:47:22Z) - Federated Neural Graph Databases [53.03085605769093]
プライバシを保ちながらマルチソースグラフベースのデータの推論を可能にする新しいフレームワークであるFederated Neural Graph Database (FedNGDB)を提案する。
既存の方法とは異なり、FedNGDBは複雑なグラフ構造と関係を扱うことができ、様々な下流タスクに適合する。
論文 参考訳(メタデータ) (2024-02-22T14:57:44Z) - Context Matters: Pushing the Boundaries of Open-Ended Answer Generation with Graph-Structured Knowledge Context [4.1229332722825]
本稿では,知識グラフに基づく拡張と合わせて,グラフ駆動型コンテキスト検索を組み合わせた新しいフレームワークを提案する。
我々は,様々なパラメータサイズを持つ大規模言語モデル(LLM)の実験を行い,知識の基盤化能力を評価し,オープンな質問に対する回答の事実的正確性を決定する。
われわれの方法であるGraphContextGenは、テキストベースの検索システムよりも一貫して優れており、その堅牢性と多くのユースケースへの適応性を実証している。
論文 参考訳(メタデータ) (2024-01-23T11:25:34Z) - FusionMind -- Improving question and answering with external context
fusion [0.0]
事前学習言語モデル(LM)と知識グラフ(KG)を用いて,文脈知識が質問応答目標(QA)に与える影響を検討した。
知識事実のコンテキストを取り入れることで、パフォーマンスが大幅に向上することがわかった。
このことは、文脈的知識事実の統合が、質問応答のパフォーマンスを高める上でより影響があることを示唆している。
論文 参考訳(メタデータ) (2023-12-31T03:51:31Z) - ReasoningLM: Enabling Structural Subgraph Reasoning in Pre-trained
Language Models for Question Answering over Knowledge Graph [142.42275983201978]
本稿では,構造化推論を行うためのGNNを模倣するサブグラフ認識型自己認識機構を提案する。
また、モデルパラメータを2万のサブグラフで合成した質問に適応するための適応チューニング戦略も採用する。
実験により、ReasoningLMは、更新されたパラメータが少なく、トレーニングデータが少ない場合でも、最先端のモデルを大きなマージンで上回っていることが示された。
論文 参考訳(メタデータ) (2023-12-30T07:18:54Z) - QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question
Answering [122.84513233992422]
学習済み言語モデル(LM)と知識グラフ(KG)の知識を用いて質問に答える問題に対処する新しいモデルであるQA-GNNを提案する。
既存のLMとLM+KGモデルに対する改善と、解釈可能で構造化された推論を行う能力を示しています。
論文 参考訳(メタデータ) (2021-04-13T17:32:51Z) - Contextualized Knowledge-aware Attentive Neural Network: Enhancing
Answer Selection with Knowledge [77.77684299758494]
ナレッジグラフ(KG)による外部知識による回答選択モデル向上のアプローチを幅広く検討しています。
まず、KGの外部知識とテキスト情報との密接な相互作用を考慮し、QA文表現を学習するコンテキスト知識相互作用学習フレームワークであるナレッジアウェアニューラルネットワーク(KNN)を紹介します。
KG情報の多様性と複雑性に対処するために, カスタマイズされたグラフ畳み込みネットワーク (GCN) を介して構造情報を用いた知識表現学習を改善し, コンテキストベースおよび知識ベースの文表現を総合的に学習する コンテキスト型知識認識型アテンシブニューラルネットワーク (CKANN) を提案する。
論文 参考訳(メタデータ) (2021-04-12T05:52:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。