論文の概要: Road Graph Generator: Mapping roads at construction sites from GPS data
- arxiv url: http://arxiv.org/abs/2402.09919v3
- Date: Tue, 08 Oct 2024 18:36:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-10 14:28:05.886062
- Title: Road Graph Generator: Mapping roads at construction sites from GPS data
- Title(参考訳): 道路グラフ生成装置:GPSデータによる建設現場の道路マッピング
- Authors: Katarzyna Michałowska, Helga Margrete Bodahl Holmestad, Signe Riemer-Sørensen,
- Abstract要約: 本稿では,GPS軌道から地図構築地点への道路推定手法を提案する。
この課題は, 建設機械の非標準運動パターンが不安定であることから, 独特な課題である。
提案手法はまず,重要な決定点として機能する道路網の交差点を識別し,エッジと接続してグラフを生成する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We propose a new method for inferring roads from GPS trajectories to map construction sites. This task presents a unique challenge due to the erratic and non-standard movement patterns of construction machinery, which significantly diverge from typical vehicular traffic on established roads. Our proposed method first identifies intersections in the road network that serve as critical decision points, and then connects them with edges to produce a graph, which can subsequently be used for planning and task-allocation. We demonstrate the approach by mapping roads at a real-life construction site in Norway. The method is validated on four increasingly complex segments of the map. In our tests, the method achieved perfect accuracy in detecting intersections and inferring roads in data with no or low noise, while its performance was reduced in areas with significant noise and consistently missing GPS updates.
- Abstract(参考訳): 本稿では,GPS軌道から地図構築地点への道路推定手法を提案する。
この課題は、建設機械の非標準運動パターンが、確立した道路における典型的な車両の交通から著しく逸脱しているため、独特な課題である。
提案手法は,まず重要な決定点として機能する道路網の交差点を識別し,それをエッジで接続してグラフを生成し,その後,計画やタスク割り当てに利用することができる。
ノルウェーの実際の建設現場で道路を地図化することで,そのアプローチを実証する。
この方法は、マップの4つのより複雑なセグメントで検証される。
実験では,道路の交点検出と道路推定において,ノイズや低騒音で完全精度を達成し,GPSの更新を一貫して欠く領域では性能が低下した。
関連論文リスト
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
本稿では,道路環境のコヒーレントな地図を作成するために,車両群から収集した局所部分写像を中心インスタンスに融合するマッピングシステムを提案する。
本手法は,シーン特異的なニューラルサイン距離場を用いて,雑音と不完全局所部分写像を併用する。
我々は,記憶効率の高いスパース機能グリッドを活用して大規模にスケールし,シーン再構築における不確実性をモデル化するための信頼スコアを導入する。
論文 参考訳(メタデータ) (2024-10-10T10:10:03Z) - Leveraging GNSS and Onboard Visual Data from Consumer Vehicles for Robust Road Network Estimation [18.236615392921273]
本稿では,自動運転車における道路グラフ構築の課題について述べる。
本稿では,これらの標準センサから取得したグローバルナビゲーション衛星システム(GNSS)のトレースと基本画像データについて提案する。
我々は、畳み込みニューラルネットワークを用いて、道路中心のセマンティックセグメンテーションタスクとして問題をフレーミングすることで、データの空間情報を利用する。
論文 参考訳(メタデータ) (2024-08-03T02:57:37Z) - Brightearth roads: Towards fully automatic road network extraction from satellite imagery [2.446672595462589]
衛星画像から道路網を抽出する完全自動パイプラインを提案する。
提案手法は, シームレスに接続し, 正確な位置決めを行う道路線路ストリングを直接生成する。
論文 参考訳(メタデータ) (2024-06-21T07:55:15Z) - PaRK-Detect: Towards Efficient Multi-Task Satellite Imagery Road
Extraction via Patch-Wise Keypoints Detection [12.145321599949236]
我々は、マルチタスク衛星画像道路抽出のための新しい手法、パッチワイド道路キーポイント検出(PaRK-Detect)を提案する。
筆者らのフレームワークは,パッチワイド道路キーポイントの位置と,それら間の近接関係を予測し,道路グラフを単一パスで構築する。
我々は,DeepGlobe, Massachusetts Roads, RoadTracerの既存の最先端手法に対するアプローチを評価し,競争力やより良い結果を得る。
論文 参考訳(メタデータ) (2023-02-26T08:26:26Z) - Haul Road Mapping from GPS Traces [0.0]
本稿では,道路網の正確な表現を,現場で運用されているトラックから取得したGPSデータを用いて自動的に導き出す可能性について検討する。
全ての試験アルゴリズムで見られる欠点に基づいて, 地雷の現場に典型的な工芸品の道路地図を幾何学的に解析するポストプロセッシング・ステップが開発された。
論文 参考訳(メタデータ) (2022-06-27T04:35:06Z) - GraphWalks: Efficient Shape Agnostic Geodesic Shortest Path Estimation [93.60478281489243]
3次元曲面上の測地線経路を近似する学習可能なネットワークを提案する。
提案手法は,最短経路の効率的な近似と測地距離推定を提供する。
論文 参考訳(メタデータ) (2022-05-30T16:22:53Z) - Find a Way Forward: a Language-Guided Semantic Map Navigator [53.69229615952205]
本稿では,新たな視点で言語誘導ナビゲーションの問題に対処する。
ロボットが自然言語の指示を実行し、地図観測に基づいて目標位置へ移動できるようにする。
提案手法は特に長距離ナビゲーションの場合において顕著な性能向上をもたらす。
論文 参考訳(メタデータ) (2022-03-07T07:40:33Z) - Fusion of neural networks, for LIDAR-based evidential road mapping [3.065376455397363]
LIDARスキャンにおける道路検出に最適化された新しい畳み込みアーキテクチャであるRoadSegを紹介する。
RoadSegは、個々のLIDARポイントを道路に属するか、そうでないかを分類するために使用される。
そこで本研究では,連続した道路検出結果を融合する明らかな道路マッピングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-05T18:14:36Z) - DAGMapper: Learning to Map by Discovering Lane Topology [84.12949740822117]
我々は、分岐とマージによるトポロジー変化を含む多くのレーンを持つ複雑な高速道路のレーン境界を描くことに集中する。
グラフのノードがレーン境界の局所領域の幾何学的および位相的特性を符号化する有向非巡回グラフィカルモデル(DAG)における推論として問題を定式化する。
2つの異なる州における2つの幹線道路における我々のアプローチの有効性を示し、高い精度とリコールと89%の正しいトポロジーを示す。
論文 参考訳(メタデータ) (2020-12-22T21:58:57Z) - Road Network Metric Learning for Estimated Time of Arrival [93.0759529610483]
本稿では,ATA(Estimated Time of Arrival)のための道路ネットワークメトリックラーニングフレームワークを提案する。
本研究は,(1)走行時間を予測する主回帰タスク,(2)リンク埋め込みベクトルの品質向上のための補助的計量学習タスクの2つの構成要素から構成される。
提案手法は最先端モデルよりも優れており,その促進は少ないデータでコールドリンクに集中していることを示す。
論文 参考訳(メタデータ) (2020-06-24T04:45:14Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
交通予測のための地理・長期時間グラフ畳み込み型ニューラルネットワーク(GLT-GCRNN)を提案する。
本研究では,地理的・長期的時間的パターンを共有する道路間のリッチな相互作用を学習する交通予測のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-23T03:50:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。