Road Graph Generator: Mapping roads at construction sites from GPS data
- URL: http://arxiv.org/abs/2402.09919v3
- Date: Tue, 08 Oct 2024 18:36:43 GMT
- Title: Road Graph Generator: Mapping roads at construction sites from GPS data
- Authors: Katarzyna Michałowska, Helga Margrete Bodahl Holmestad, Signe Riemer-Sørensen,
- Abstract summary: We propose a new method for inferring roads from GPS trajectories to map construction sites.
This task presents a unique challenge due to the erratic and non-standard movement patterns of construction machinery.
Our proposed method first identifies intersections in the road network that serve as critical decision points, and then connects them with edges to produce a graph.
- Score: 0.0
- License:
- Abstract: We propose a new method for inferring roads from GPS trajectories to map construction sites. This task presents a unique challenge due to the erratic and non-standard movement patterns of construction machinery, which significantly diverge from typical vehicular traffic on established roads. Our proposed method first identifies intersections in the road network that serve as critical decision points, and then connects them with edges to produce a graph, which can subsequently be used for planning and task-allocation. We demonstrate the approach by mapping roads at a real-life construction site in Norway. The method is validated on four increasingly complex segments of the map. In our tests, the method achieved perfect accuracy in detecting intersections and inferring roads in data with no or low noise, while its performance was reduced in areas with significant noise and consistently missing GPS updates.
Related papers
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
We present a mapping system that fuses local submaps gathered from a fleet of vehicles at a central instance to produce a coherent map of the road environment.
Our method jointly aligns and merges the noisy and incomplete local submaps using a scene-specific Neural Signed Distance Field.
We leverage memory-efficient sparse feature-grids to scale to large areas and introduce a confidence score to model uncertainty in scene reconstruction.
arXiv Detail & Related papers (2024-10-10T10:10:03Z) - Leveraging GNSS and Onboard Visual Data from Consumer Vehicles for Robust Road Network Estimation [18.236615392921273]
This paper addresses the challenge of road graph construction for autonomous vehicles.
We propose using global navigation satellite system (GNSS) traces and basic image data acquired from these standard sensors in consumer vehicles.
We exploit the spatial information in the data by framing the problem as a road centerline semantic segmentation task using a convolutional neural network.
arXiv Detail & Related papers (2024-08-03T02:57:37Z) - Brightearth roads: Towards fully automatic road network extraction from satellite imagery [2.446672595462589]
We propose a fully automated pipeline for extracting road networks from satellite imagery.
Our approach directly generates road line-strings that are seamlessly connected and precisely positioned.
arXiv Detail & Related papers (2024-06-21T07:55:15Z) - PaRK-Detect: Towards Efficient Multi-Task Satellite Imagery Road
Extraction via Patch-Wise Keypoints Detection [12.145321599949236]
We propose a new scheme for multi-task satellite imagery road extraction, Patch-wise Road Keypoints Detection (PaRK-Detect)
Our framework predicts the position of patch-wise road keypoints and the adjacent relationships between them to construct road graphs in a single pass.
We evaluate our approach against the existing state-of-the-art methods on DeepGlobe, Massachusetts Roads, and RoadTracer datasets and achieve competitive or better results.
arXiv Detail & Related papers (2023-02-26T08:26:26Z) - Haul Road Mapping from GPS Traces [0.0]
This paper investigates the possibility of automatically deriving an accurate representation of the road network using GPS data available from haul trucks operating on site.
Based on shortcomings seen in all tested algorithms, a post-processing step is developed which geometrically analyses the created road map for artefacts typical of free-drive areas on mine sites.
arXiv Detail & Related papers (2022-06-27T04:35:06Z) - GraphWalks: Efficient Shape Agnostic Geodesic Shortest Path Estimation [93.60478281489243]
We propose a learnable network to approximate geodesic paths on 3D surfaces.
The proposed method provides efficient approximations of the shortest paths and geodesic distances estimations.
arXiv Detail & Related papers (2022-05-30T16:22:53Z) - Find a Way Forward: a Language-Guided Semantic Map Navigator [53.69229615952205]
This paper attacks the problem of language-guided navigation in a new perspective.
We use novel semantic navigation maps, which enables robots to carry out natural language instructions and move to a target position based on the map observations.
The proposed approach has noticeable performance gains, especially in long-distance navigation cases.
arXiv Detail & Related papers (2022-03-07T07:40:33Z) - Fusion of neural networks, for LIDAR-based evidential road mapping [3.065376455397363]
We introduce RoadSeg, a new convolutional architecture that is optimized for road detection in LIDAR scans.
RoadSeg is used to classify individual LIDAR points as either belonging to the road, or not.
We thus secondly present an evidential road mapping algorithm, that fuses consecutive road detection results.
arXiv Detail & Related papers (2021-02-05T18:14:36Z) - DAGMapper: Learning to Map by Discovering Lane Topology [84.12949740822117]
We focus on drawing the lane boundaries of complex highways with many lanes that contain topology changes due to forks and merges.
We formulate the problem as inference in a directed acyclic graphical model (DAG), where the nodes of the graph encode geometric and topological properties of the local regions of the lane boundaries.
We show the effectiveness of our approach on two major North American Highways in two different states and show high precision and recall as well as 89% correct topology.
arXiv Detail & Related papers (2020-12-22T21:58:57Z) - Road Network Metric Learning for Estimated Time of Arrival [93.0759529610483]
In this paper, we propose the Road Network Metric Learning framework for Estimated Time of Arrival (ETA)
It consists of two components: (1) a main regression task to predict the travel time, and (2) an auxiliary metric learning task to improve the quality of link embedding vectors.
We show that our method outperforms the state-of-the-art model and the promotion concentrates on the cold links with few data.
arXiv Detail & Related papers (2020-06-24T04:45:14Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.