HetGL2R: Learning to Rank Critical Road Segments via Attributed Heterogeneous Graph Random Walks
- URL: http://arxiv.org/abs/2504.19199v1
- Date: Sun, 27 Apr 2025 11:32:41 GMT
- Title: HetGL2R: Learning to Rank Critical Road Segments via Attributed Heterogeneous Graph Random Walks
- Authors: Ming Xu, Jinrong Xiang, Zilong Xie, Xiangfu Meng,
- Abstract summary: HetGL2R is an attributed heterogeneous graph learning approach for ranking node importance in road networks.<n>HetGL2R significantly outperforms baselines in incorporating OD demand and route choice information, achieving more accurate and robust node ranking.
- Score: 1.015962377068103
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately identifying critical nodes with high spatial influence in road networks is essential for enhancing the efficiency of traffic management and urban planning. However, existing node importance ranking methods mainly rely on structural features and topological information, often overlooking critical factors such as origin-destination (OD) demand and route information. This limitation leaves considerable room for improvement in ranking accuracy. To address this issue, we propose HetGL2R, an attributed heterogeneous graph learning approach for ranking node importance in road networks. This method introduces a tripartite graph (trip graph) to model the structure of the road network, integrating OD demand, route choice, and various structural features of road segments. Based on the trip graph, we design an embedding method to learn node representations that reflect the spatial influence of road segments. The method consists of a heterogeneous random walk sampling algorithm (HetGWalk) and a Transformer encoder. HetGWalk constructs multiple attribute-guided graphs based on the trip graph to enrich the diversity of semantic associations between nodes. It then applies a joint random walk mechanism to convert both topological structures and node attributes into sequences, enabling the encoder to capture spatial dependencies more effectively among road segments. Finally, a listwise ranking strategy is employed to evaluate node importance. To validate the performance of our method, we construct two synthetic datasets using SUMO based on simulated road networks. Experimental results demonstrate that HetGL2R significantly outperforms baselines in incorporating OD demand and route choice information, achieving more accurate and robust node ranking. Furthermore, we conduct a case study using real-world taxi trajectory data from Beijing, further verifying the practicality of the proposed method.
Related papers
- Translating Images to Road Network: A Sequence-to-Sequence Perspective [32.39335559663393]
Road network is essential for the generation of high-definition maps.
Existing methods struggle to merge the two types of data domains effectively.
We propose a unified representation of both types of data domain by projecting both Euclidean and non-Euclidean data into an integer series called RoadNet Sequence.
arXiv Detail & Related papers (2024-02-13T04:12:41Z) - Graph Transformer GANs with Graph Masked Modeling for Architectural
Layout Generation [153.92387500677023]
We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations.
The proposed graph Transformer encoder combines graph convolutions and self-attentions in a Transformer to model both local and global interactions.
We also propose a novel self-guided pre-training method for graph representation learning.
arXiv Detail & Related papers (2024-01-15T14:36:38Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAE is a graph autoencoder framework that leverages transferability and stability of GNNs to achieve efficient network alignment without retraining.
Our experiments demonstrate that T-GAE outperforms the state-of-the-art optimization method and the best GNN approach by up to 38.7% and 50.8%, respectively.
arXiv Detail & Related papers (2023-10-05T02:58:29Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - MGL2Rank: Learning to Rank the Importance of Nodes in Road Networks Based on Multi-Graph Fusion [7.835154677901744]
Existing methods for evaluating the importance of nodes in traffic networks only consider topological information and traffic volumes.
We propose a graph learning-based framework (MGL2Rank) that integrates the rich characteristics of road networks to rank the importance of nodes.
arXiv Detail & Related papers (2023-05-20T13:46:44Z) - Graph Transformer GANs for Graph-Constrained House Generation [223.739067413952]
We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations.
The GTGAN learns effective graph node relations in an end-to-end fashion for the challenging graph-constrained house generation task.
arXiv Detail & Related papers (2023-03-14T20:35:45Z) - HDGT: Heterogeneous Driving Graph Transformer for Multi-Agent Trajectory
Prediction via Scene Encoding [76.9165845362574]
We propose a backbone modelling the driving scene as a heterogeneous graph with different types of nodes and edges.
For spatial relation encoding, the coordinates of the node as well as its in-edges are in the local node-centric coordinate system.
Experimental results show that HDGT achieves state-of-the-art performance for the task of trajectory prediction.
arXiv Detail & Related papers (2022-04-30T07:08:30Z) - Trajectory Prediction with Graph-based Dual-scale Context Fusion [43.51107329748957]
We present a graph-based trajectory prediction network named the Dual Scale Predictor.
It encodes both the static and dynamical driving context in a hierarchical manner.
Thanks to the proposed dual-scale context fusion network, our DSP is able to generate accurate and human-like multi-modal trajectories.
arXiv Detail & Related papers (2021-11-02T13:42:16Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - Reasoning Graph Networks for Kinship Verification: from Star-shaped to
Hierarchical [85.0376670244522]
We investigate the problem of facial kinship verification by learning hierarchical reasoning graph networks.
We develop a Star-shaped Reasoning Graph Network (S-RGN) to exploit more powerful and flexible capacity.
We also develop a Hierarchical Reasoning Graph Network (H-RGN) to exploit more powerful and flexible capacity.
arXiv Detail & Related papers (2021-09-06T03:16:56Z) - Bayesian Graph Convolutional Network for Traffic Prediction [23.30484840210517]
We propose a Bayesian Graph Convolutional Network (BGCN) framework to alleviate these issues.
Under this framework, the graph structure is viewed as a random realization from a parametric generative model.
We verify the effectiveness of our method on five real-world datasets, and the experimental results demonstrate that BGCN attains superior performance compared with state-of-the-art methods.
arXiv Detail & Related papers (2021-04-01T14:19:37Z) - Bayesian Spatio-Temporal Graph Convolutional Network for Traffic
Forecasting [22.277878492878475]
We propose a Bayesian S-temporal ConTemporal Graphal Network (BSTGCN) for traffic prediction.
The graph structure in our network is learned from the physical topology of the road network and traffic data in an end-to-end manner.
We verify the effectiveness of our method on two real-world datasets, and the experimental results demonstrate that BSTGCN attains superior performance compared with state-of-the-art methods.
arXiv Detail & Related papers (2020-10-15T03:41:37Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.