Towards Safer Large Language Models through Machine Unlearning
- URL: http://arxiv.org/abs/2402.10058v2
- Date: Wed, 5 Jun 2024 04:57:09 GMT
- Title: Towards Safer Large Language Models through Machine Unlearning
- Authors: Zheyuan Liu, Guangyao Dou, Zhaoxuan Tan, Yijun Tian, Meng Jiang,
- Abstract summary: Selective Knowledge Unlearning ( SKU) is designed to eliminate harmful knowledge while preserving utility on normal prompts.
First stage aims to identify and acquire harmful knowledge within the model, whereas the second is dedicated to remove this knowledge.
Our experiments demonstrate that SKU identifies a good balance point between removing harmful information and preserving utility.
- Score: 19.698620794387338
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The rapid advancement of Large Language Models (LLMs) has demonstrated their vast potential across various domains, attributed to their extensive pretraining knowledge and exceptional generalizability. However, LLMs often encounter challenges in generating harmful content when faced with problematic prompts. To address this problem, existing work attempted to implement a gradient ascent based approach to prevent LLMs from producing harmful output. While these methods can be effective, they frequently impact the model utility in responding to normal prompts. To address this gap, we introduce Selective Knowledge negation Unlearning (SKU), a novel unlearning framework for LLMs, designed to eliminate harmful knowledge while preserving utility on normal prompts. Specifically, SKU is consisted of two stages: harmful knowledge acquisition stage and knowledge negation stage. The first stage aims to identify and acquire harmful knowledge within the model, whereas the second is dedicated to remove this knowledge. SKU selectively isolates and removes harmful knowledge in model parameters, ensuring the model's performance remains robust on normal prompts. Our experiments conducted across various LLM architectures demonstrate that SKU identifies a good balance point between removing harmful information and preserving utility.
Related papers
- Disentangling Memory and Reasoning Ability in Large Language Models [97.26827060106581]
We propose a new inference paradigm that decomposes the complex inference process into two distinct and clear actions.
Our experiment results show that this decomposition improves model performance and enhances the interpretability of the inference process.
arXiv Detail & Related papers (2024-11-20T17:55:38Z) - Exploring Knowledge Boundaries in Large Language Models for Retrieval Judgment [56.87031484108484]
Large Language Models (LLMs) are increasingly recognized for their practical applications.
Retrieval-Augmented Generation (RAG) tackles this challenge and has shown a significant impact on LLMs.
By minimizing retrieval requests that yield neutral or harmful results, we can effectively reduce both time and computational costs.
arXiv Detail & Related papers (2024-11-09T15:12:28Z) - When Machine Unlearning Meets Retrieval-Augmented Generation (RAG): Keep Secret or Forget Knowledge? [15.318301783084681]
Large language models (LLMs) can inadvertently learn and retain sensitive information and harmful content during training.
We propose a lightweight unlearning framework based on Retrieval-Augmented Generation (RAG) technology.
We evaluate our framework through extensive experiments on both open-source and closed-source models, including ChatGPT, Gemini, Llama-2-7b-chat-hf, and PaLM 2.
arXiv Detail & Related papers (2024-10-20T03:51:01Z) - UNLEARN Efficient Removal of Knowledge in Large Language Models [1.9797215742507548]
This paper proposes a novel method to achieve this objective called UNLEARN.
The approach builds upon subspace methods to identify and specifically target the removal of knowledge without adversely affecting other knowledge in the LLM.
Results demonstrate 96% of targeted knowledge can be forgotten while maintaining performance on other knowledge within 2.5% of the original model.
arXiv Detail & Related papers (2024-08-08T00:53:31Z) - SNAP: Unlearning Selective Knowledge in Large Language Models with Negative Instructions [37.172662930947446]
Instruction-following large language models (LLMs) inadvertently disclose personal or copyrighted information.
We propose SNAP, an innovative framework designed to selectively unlearn information.
We evaluate our framework on various NLP benchmarks and demonstrate that our approach retains the original LLM capabilities.
arXiv Detail & Related papers (2024-06-18T06:54:05Z) - Split, Unlearn, Merge: Leveraging Data Attributes for More Effective Unlearning in LLMs [18.629717934007513]
"SPlit, UNlearn, MerGE" (SPUNGE) is a framework that can be used with any unlearning method to amplify its effectiveness.
We empirically demonstrate that SPUNGE significantly improves the performance of two recent unlearning methods on state-of-the-art LLMs.
arXiv Detail & Related papers (2024-06-17T17:35:52Z) - Understanding Privacy Risks of Embeddings Induced by Large Language Models [75.96257812857554]
Large language models show early signs of artificial general intelligence but struggle with hallucinations.
One promising solution is to store external knowledge as embeddings, aiding LLMs in retrieval-augmented generation.
Recent studies experimentally showed that the original text can be partially reconstructed from text embeddings by pre-trained language models.
arXiv Detail & Related papers (2024-04-25T13:10:48Z) - A Comprehensive Study of Knowledge Editing for Large Language Models [82.65729336401027]
Large Language Models (LLMs) have shown extraordinary capabilities in understanding and generating text that closely mirrors human communication.
This paper defines the knowledge editing problem and provides a comprehensive review of cutting-edge approaches.
We introduce a new benchmark, KnowEdit, for a comprehensive empirical evaluation of representative knowledge editing approaches.
arXiv Detail & Related papers (2024-01-02T16:54:58Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Knowledge Unlearning for LLMs: Tasks, Methods, and Challenges [11.228131492745842]
Large language models (LLMs) have spurred a new research paradigm in natural language processing.
Despite their excellent capability in knowledge-based question answering and reasoning, their potential to retain faulty or even harmful knowledge poses risks of malicious application.
Knowledge unlearning, derived from analogous studies on machine unlearning, presents a promising avenue to address this concern.
arXiv Detail & Related papers (2023-11-27T12:37:51Z) - Gaining Wisdom from Setbacks: Aligning Large Language Models via Mistake
Analysis [127.85293480405082]
The rapid development of large language models (LLMs) has not only provided numerous opportunities but also presented significant challenges.
Existing alignment methods usually direct LLMs toward the favorable outcomes by utilizing human-annotated, flawless instruction-response pairs.
This study proposes a novel alignment technique based on mistake analysis, which deliberately exposes LLMs to erroneous content to learn the reasons for mistakes and how to avoid them.
arXiv Detail & Related papers (2023-10-16T14:59:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.