Both Matter: Enhancing the Emotional Intelligence of Large Language Models without Compromising the General Intelligence
- URL: http://arxiv.org/abs/2402.10073v3
- Date: Wed, 12 Jun 2024 04:13:17 GMT
- Title: Both Matter: Enhancing the Emotional Intelligence of Large Language Models without Compromising the General Intelligence
- Authors: Weixiang Zhao, Zhuojun Li, Shilong Wang, Yang Wang, Yulin Hu, Yanyan Zhao, Chen Wei, Bing Qin,
- Abstract summary: Emotional Intelligence (EI) plays critical roles in improving user interaction experience for the current large language model (LLM) based conversational general AI assistants.
Previous works mainly focus on raising the emotion perception ability of them via naive fine-tuning on EI-related classification or regression tasks.
We introduce textscEiBench, a large-scale collection of EI-related tasks in the text-to-text formation with task instructions.
A novel underlinetextbfModular underlinetextbfEmotional underline
- Score: 41.711534277034374
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emotional Intelligence (EI), consisting of emotion perception, emotion cognition and emotion expression, plays the critical roles in improving user interaction experience for the current large language model (LLM) based conversational general AI assistants. Previous works mainly focus on raising the emotion perception ability of them via naive fine-tuning on EI-related classification or regression tasks. However, this leads to the incomplete enhancement of EI and catastrophic forgetting of the general intelligence (GI). To this end, we first introduce \textsc{EiBench}, a large-scale collection of EI-related tasks in the text-to-text formation with task instructions that covers all three aspects of EI, which lays a solid foundation for the comprehensive EI enhancement of LLMs. Then a novel \underline{\textbf{Mo}}dular \underline{\textbf{E}}motional \underline{\textbf{I}}ntelligence enhancement method (\textbf{MoEI}), consisting of Modular Parameter Expansion and intra-inter modulation, is proposed to comprehensively enhance the EI of LLMs without compromise their GI. Extensive experiments on two representative LLM-based assistants, Flan-T5 and LLaMA-2-Chat, demonstrate the effectiveness of MoEI to improving EI while maintain GI.
Related papers
- Iteration of Thought: Leveraging Inner Dialogue for Autonomous Large Language Model Reasoning [0.0]
Iterative human engagement is a common and effective means of leveraging the advanced language processing power of large language models (LLMs)
We propose the Iteration of Thought (IoT) framework for enhancing LLM responses by generating "thought"-provoking prompts.
Unlike static or semi-static approaches, IoT adapts its reasoning path dynamically, based on evolving context.
arXiv Detail & Related papers (2024-09-19T09:44:17Z) - LLM-Driven Multimodal Opinion Expression Identification [31.960884435487078]
Opinion Expression Identification (OEI) is essential in NLP for applications ranging from voice assistants to depression diagnosis.
This study extends OEI to encompass multimodal inputs, underlining the significance of auditory cues in delivering emotional subtleties beyond the capabilities of text.
We introduce a novel multimodal OEI task, integrating text and speech to mirror real-world scenarios.
arXiv Detail & Related papers (2024-06-26T05:52:47Z) - LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
We introduce LangSuitE, a versatile and simulation-free testbed featuring 6 representative embodied tasks in textual embodied worlds.
Compared with previous LLM-based testbeds, LangSuitE offers adaptability to diverse environments without multiple simulation engines.
We devise a novel chain-of-thought (CoT) schema, EmMem, which summarizes embodied states w.r.t. history information.
arXiv Detail & Related papers (2024-06-24T03:36:29Z) - OPEx: A Component-Wise Analysis of LLM-Centric Agents in Embodied
Instruction Following [38.99303334457817]
Embodied Instruction Following (EIF) is a crucial task in embodied learning, requiring agents to interact with their environment through egocentric observations to fulfill natural language instructions.
Recent advancements have seen a surge in employing large language models (LLMs) within a framework-centric approach to enhance performance in EIF.
We introduce OPEx, a comprehensive framework that delineates the core components essential for solving EIF tasks: Observer, Planner, and Executor.
arXiv Detail & Related papers (2024-03-05T14:53:53Z) - EmoBench: Evaluating the Emotional Intelligence of Large Language Models [73.60839120040887]
EmoBench is a benchmark that draws upon established psychological theories and proposes a comprehensive definition for machine Emotional Intelligence (EI)
EmoBench includes a set of 400 hand-crafted questions in English and Chinese, which are meticulously designed to require thorough reasoning and understanding.
Our findings reveal a considerable gap between the EI of existing Large Language Models and the average human, highlighting a promising direction for future research.
arXiv Detail & Related papers (2024-02-19T11:48:09Z) - Igniting Language Intelligence: The Hitchhiker's Guide From
Chain-of-Thought Reasoning to Language Agents [80.5213198675411]
Large language models (LLMs) have dramatically enhanced the field of language intelligence.
LLMs leverage the intriguing chain-of-thought (CoT) reasoning techniques, obliging them to formulate intermediate steps en route to deriving an answer.
Recent research endeavors have extended CoT reasoning methodologies to nurture the development of autonomous language agents.
arXiv Detail & Related papers (2023-11-20T14:30:55Z) - Self-Convinced Prompting: Few-Shot Question Answering with Repeated
Introspection [13.608076739368949]
We introduce a novel framework that harnesses the potential of large-scale pre-trained language models.
Our framework processes the output of a typical few-shot chain-of-thought prompt, assesses the correctness of the response, scrutinizes the answer, and ultimately produces a new solution.
arXiv Detail & Related papers (2023-10-08T06:36:26Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - ERICA: Improving Entity and Relation Understanding for Pre-trained
Language Models via Contrastive Learning [97.10875695679499]
We propose a novel contrastive learning framework named ERICA in pre-training phase to obtain a deeper understanding of the entities and their relations in text.
Experimental results demonstrate that our proposed ERICA framework achieves consistent improvements on several document-level language understanding tasks.
arXiv Detail & Related papers (2020-12-30T03:35:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.