EAGER-LLM: Enhancing Large Language Models as Recommenders through Exogenous Behavior-Semantic Integration
- URL: http://arxiv.org/abs/2502.14735v1
- Date: Thu, 20 Feb 2025 17:01:57 GMT
- Title: EAGER-LLM: Enhancing Large Language Models as Recommenders through Exogenous Behavior-Semantic Integration
- Authors: Minjie Hong, Yan Xia, Zehan Wang, Jieming Zhu, Ye Wang, Sihang Cai, Xiaoda Yang, Quanyu Dai, Zhenhua Dong, Zhimeng Zhang, Zhou Zhao,
- Abstract summary: Large language models (LLMs) are increasingly leveraged as foundational backbones in advanced recommender systems.
LLMs are pre-trained linguistic semantics but learn collaborative semantics from scratch via the llm-Backbone.
We propose EAGER-LLM, a decoder-only generative recommendation framework that integrates endogenous and endogenous behavioral and semantic information in a non-intrusive manner.
- Score: 60.47645731801866
- License:
- Abstract: Large language models (LLMs) are increasingly leveraged as foundational backbones in the development of advanced recommender systems, offering enhanced capabilities through their extensive knowledge and reasoning. Existing llm-based recommender systems (RSs) often face challenges due to the significant differences between the linguistic semantics of pre-trained LLMs and the collaborative semantics essential for RSs. These systems use pre-trained linguistic semantics but learn collaborative semantics from scratch via the llm-Backbone. However, LLMs are not designed for recommendations, leading to inefficient collaborative learning, weak result correlations, and poor integration of traditional RS features. To address these challenges, we propose EAGER-LLM, a decoder-only llm-based generative recommendation framework that integrates endogenous and exogenous behavioral and semantic information in a non-intrusive manner. Specifically, we propose 1)dual-source knowledge-rich item indices that integrates indexing sequences for exogenous signals, enabling efficient link-wide processing; 2)non-invasive multiscale alignment reconstruction tasks guide the model toward a deeper understanding of both collaborative and semantic signals; 3)an annealing adapter designed to finely balance the model's recommendation performance with its comprehension capabilities. We demonstrate EAGER-LLM's effectiveness through rigorous testing on three public benchmarks.
Related papers
- Semantic Convergence: Harmonizing Recommender Systems via Two-Stage Alignment and Behavioral Semantic Tokenization [10.47505806629852]
Large language models (LLMs) are adept at discerning profound user interests from historical behaviors.
We propose a novel framework that harmoniously merges traditional recommendation models with the prowess of LLMs.
We design a series of specialized supervised learning tasks aimed at aligning collaborative signals with the subtleties of natural language semantics.
arXiv Detail & Related papers (2024-12-18T12:07:58Z) - Unveiling User Preferences: A Knowledge Graph and LLM-Driven Approach for Conversational Recommendation [55.5687800992432]
We propose a plug-and-play framework that synergizes Large Language Models (LLMs) and Knowledge Graphs (KGs) to unveil user preferences.
This enables the LLM to transform KG entities into concise natural language descriptions, allowing them to comprehend domain-specific knowledge.
arXiv Detail & Related papers (2024-11-16T11:47:21Z) - Align-SLM: Textless Spoken Language Models with Reinforcement Learning from AI Feedback [50.84142264245052]
This work introduces the Align-SLM framework to enhance the semantic understanding of textless Spoken Language Models (SLMs)
Our approach generates multiple speech continuations from a given prompt and uses semantic metrics to create preference data for Direct Preference Optimization (DPO)
We evaluate the framework using ZeroSpeech 2021 benchmarks for lexical and syntactic modeling, the spoken version of the StoryCloze dataset for semantic coherence, and other speech generation metrics, including the GPT4-o score and human evaluation.
arXiv Detail & Related papers (2024-11-04T06:07:53Z) - Unleash LLMs Potential for Recommendation by Coordinating Twin-Tower Dynamic Semantic Token Generator [60.07198935747619]
We propose Twin-Tower Dynamic Semantic Recommender (T TDS), the first generative RS which adopts dynamic semantic index paradigm.
To be more specific, we for the first time contrive a dynamic knowledge fusion framework which integrates a twin-tower semantic token generator into the LLM-based recommender.
The proposed T TDS recommender achieves an average improvement of 19.41% in Hit-Rate and 20.84% in NDCG metric, compared with the leading baseline methods.
arXiv Detail & Related papers (2024-09-14T01:45:04Z) - Beyond Inter-Item Relations: Dynamic Adaption for Enhancing LLM-Based Sequential Recommendation [83.87767101732351]
Sequential recommender systems (SRS) predict the next items that users may prefer based on user historical interaction sequences.
Inspired by the rise of large language models (LLMs) in various AI applications, there is a surge of work on LLM-based SRS.
We propose DARec, a sequential recommendation model built on top of coarse-grained adaption for capturing inter-item relations.
arXiv Detail & Related papers (2024-08-14T10:03:40Z) - Learnable Item Tokenization for Generative Recommendation [78.30417863309061]
We propose LETTER (a LEarnable Tokenizer for generaTivE Recommendation), which integrates hierarchical semantics, collaborative signals, and code assignment diversity.
LETTER incorporates Residual Quantized VAE for semantic regularization, a contrastive alignment loss for collaborative regularization, and a diversity loss to mitigate code assignment bias.
arXiv Detail & Related papers (2024-05-12T15:49:38Z) - Exploring the Impact of Large Language Models on Recommender Systems: An Extensive Review [2.780460221321639]
The paper underscores the significance of Large Language Models in reshaping recommender systems.
LLMs exhibit exceptional proficiency in recommending items, showcasing their adeptness in comprehending intricacies of language.
Despite their transformative potential, challenges persist, including sensitivity to input prompts, occasional misinterpretations, and unforeseen recommendations.
arXiv Detail & Related papers (2024-02-11T00:24:17Z) - Representation Learning with Large Language Models for Recommendation [33.040389989173825]
We propose a model-agnostic framework RLMRec to enhance recommenders with large language models (LLMs)empowered representation learning.
RLMRec incorporates auxiliary textual signals, develops a user/item profiling paradigm empowered by LLMs, and aligns the semantic space of LLMs with the representation space of collaborative relational signals.
arXiv Detail & Related papers (2023-10-24T15:51:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.