論文の概要: Hierarchical hybrid modeling for flexible tool use
- arxiv url: http://arxiv.org/abs/2402.10088v1
- Date: Thu, 1 Feb 2024 15:15:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-18 12:38:57.455091
- Title: Hierarchical hybrid modeling for flexible tool use
- Title(参考訳): フレキシブルツールのための階層型ハイブリッドモデリング
- Authors: Matteo Priorelli, Ivilin Peev Stoianov
- Abstract要約: 本稿では,エージェントの構成を複製する複数のハイブリッドユニットで構成され,高レベル離散モデルによって制御されるアーキテクチャを提案する。
我々はこの階層的ハイブリッドモデルを非自明なタスクで評価し、移動ツールを選択した後、移動物体に到達した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In a recent computational framework called active inference, discrete models
can be linked to their continuous counterparts to perform decision-making in
changing environments. From another perspective, simple agents can be combined
to better capture the causal relationships of the world. How can we use these
two features together to achieve efficient goal-directed behavior? We present
an architecture composed of several hybrid -- continuous and discrete -- units
replicating the agent's configuration, controlled by a high-level discrete
model that achieves dynamic planning and synchronized behavior. Additional
factorizations within each level allow to represent hierarchically other agents
and objects in relation to the self. We evaluate this hierarchical hybrid model
on a non-trivial task: reaching a moving object after having picked a moving
tool. This study extends past work on control as inference and proposes an
alternative direction to deep reinforcement learning.
- Abstract(参考訳): アクティブ推論と呼ばれる最近の計算フレームワークでは、離散モデルは連続的なモデルとリンクして、変化する環境における意思決定を行うことができる。
別の観点からは、単純なエージェントを組み合わせることで、世界の因果関係をよりよく捉えることができる。
この2つの機能を組み合わせて、効率的なゴール指向行動を実現するにはどうすればよいのか?
本稿では,エージェントの構成を複製し,動的計画と同期動作を実現する高レベル離散モデルにより制御する,複数のハイブリッドな,連続的かつ離散的なユニットからなるアーキテクチャを提案する。
各レベル内の追加の因子化により、階層的に他のエージェントやオブジェクトを自己と関連づけることができる。
我々はこの階層的ハイブリッドモデルを非自明なタスクで評価し、移動ツールを選択した後、移動物体に到達した。
本研究は,制御に関する過去の研究を推論として拡張し,深層強化学習に代わる方向性を提案する。
関連論文リスト
- Learning in Hybrid Active Inference Models [0.8749675983608172]
本稿では,高レベル離散型アクティブ・推論・プランナを低レベル連続型アクティブ・推論・コントローラの上に置く階層型ハイブリッド・アクティブ・推論・エージェントを提案する。
我々は、意味のある離散表現のエンドツーエンド学習を実装する線形力学系をリカレントに切り替えるという最近の研究を活用している。
当社のモデルを,探索と計画成功による高速なシステム識別を実証し,スパースな連続マウンテンカータスクに適用する。
論文 参考訳(メタデータ) (2024-09-02T08:41:45Z) - Adaptive Planning with Generative Models under Uncertainty [20.922248169620783]
生成モデルによる計画は、幅広い領域にわたる効果的な意思決定パラダイムとして現れてきた。
最新の環境観測に基づいて決定を下すことができるため、各段階での継続的再計画は直感的に思えるかもしれないが、かなりの計算上の課題をもたらす。
本研究は,長軸状態軌跡を予測できる生成モデルの能力を活用する,シンプルな適応計画手法を導入することで,この問題に対処する。
論文 参考訳(メタデータ) (2024-08-02T18:07:53Z) - Efficient Adaptation in Mixed-Motive Environments via Hierarchical Opponent Modeling and Planning [51.52387511006586]
本稿では,HOP(Hierarchical Opponent Modeling and Planning)を提案する。
HOPは階層的に2つのモジュールから構成される: 相手の目標を推論し、対応する目標条件のポリシーを学ぶ、反対モデリングモジュール。
HOPは、さまざまな未確認エージェントと相互作用する際、優れた少数ショット適応能力を示し、セルフプレイのシナリオで優れている。
論文 参考訳(メタデータ) (2024-06-12T08:48:06Z) - Dynamic planning in hierarchical active inference [0.0]
人間の脳が認知決定に関連する運動軌跡を推論し、導入する能力について述べる。
本研究では,アクティブ推論における動的計画の話題に焦点を当てた。
論文 参考訳(メタデータ) (2024-02-18T17:32:53Z) - Compositional Foundation Models for Hierarchical Planning [52.18904315515153]
本稿では,言語,視覚,行動データを個別に訓練し,長期的課題を解決するための基礎モデルを提案する。
我々は,大規模なビデオ拡散モデルを用いて,環境に根ざした記号的計画を構築するために,大規模言語モデルを用いている。
生成したビデオプランは、生成したビデオからアクションを推論する逆ダイナミクスモデルを通じて、視覚運動制御に基礎を置いている。
論文 参考訳(メタデータ) (2023-09-15T17:44:05Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
視覚力学モデリングのための新しい連続学習手法を提案し,その視覚制御と予測における有効性について検討する。
まず,タスク固有のダイナミクスをガウスの混合で学習する混合世界モデルを提案し,その上で,破滅的な忘れを克服するための新たなトレーニング戦略を提案する。
我々のモデルは,DeepMind Control と Meta-World のベンチマークにおいて,既存の連続的学習アルゴリズムと視覚的RLアルゴリズムの単純な組み合わせよりも優れている。
論文 参考訳(メタデータ) (2023-03-12T05:08:03Z) - Planning to Practice: Efficient Online Fine-Tuning by Composing Goals in
Latent Space [76.46113138484947]
汎用ロボットは、現実世界の非構造環境において困難なタスクを完了するために、多様な行動レパートリーを必要とする。
この問題に対処するため、目標条件強化学習は、コマンド上の幅広いタスクの目標に到達可能なポリシーを取得することを目的としている。
本研究では,長期的課題に対する目標条件付き政策を実践的に訓練する手法であるPlanning to Practiceを提案する。
論文 参考訳(メタデータ) (2022-05-17T06:58:17Z) - Active Inference for Stochastic Control [1.3124513975412255]
能動推論は直感的な(確率的な)形式主義を考えると、問題を制御するための代替手法として登場した。
本研究は,制御設定のためのアクティブ推論の有用性を評価するために構築される。
本研究は, 強化学習と比較して, 決定論的・部分的可観測性の両方において, 能動推論の利点を示すものである。
論文 参考訳(メタデータ) (2021-08-27T12:51:42Z) - Behavior Priors for Efficient Reinforcement Learning [97.81587970962232]
本稿では,情報とアーキテクチャの制約を,確率論的モデリング文献のアイデアと組み合わせて行動の事前学習を行う方法について考察する。
このような潜伏変数の定式化が階層的強化学習(HRL)と相互情報と好奇心に基づく目的との関係について論じる。
シミュレーションされた連続制御領域に適用することで,フレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2020-10-27T13:17:18Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
学習した前進力学モデルを使用する際の根本的な課題の1つは、学習したモデルの目的と下流のプランナーやポリシーの目標とのミスマッチである。
本稿では,タスク関連情報への直接的予測を提案し,そのモデルが現在のタスクを認識し,状態空間の関連量のみをモデル化することを奨励する。
提案手法は,目標条件付きシーンの関連部分を効果的にモデル化し,その結果,標準タスク非依存のダイナミックスモデルやモデルレス強化学習より優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-14T16:42:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。