論文の概要: MIM-Refiner: A Contrastive Learning Boost from Intermediate Pre-Trained Representations
- arxiv url: http://arxiv.org/abs/2402.10093v2
- Date: Mon, 3 Jun 2024 17:51:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 18:43:36.069829
- Title: MIM-Refiner: A Contrastive Learning Boost from Intermediate Pre-Trained Representations
- Title(参考訳): MIM-Refiner: 中間的事前学習表現からのコントラスト学習促進
- Authors: Benedikt Alkin, Lukas Miklautz, Sepp Hochreiter, Johannes Brandstetter,
- Abstract要約: MIM-Refinerは、事前訓練されたMIMモデルの対照的な学習促進である。
我々はMIMモデルの特徴を、サブパーから最先端のオフ・ザ・シェルフ機能まで洗練する。
- 参考スコア(独自算出の注目度): 16.885965702357314
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce MIM (Masked Image Modeling)-Refiner, a contrastive learning boost for pre-trained MIM models. MIM-Refiner is motivated by the insight that strong representations within MIM models generally reside in intermediate layers. Accordingly, MIM-Refiner leverages multiple contrastive heads that are connected to different intermediate layers. In each head, a modified nearest neighbor objective constructs semantic clusters that capture semantic information which improves performance on downstream tasks, including off-the-shelf and fine-tuning settings. The refinement process is short and simple - yet highly effective. Within a few epochs, we refine the features of MIM models from subpar to state-of-the-art, off-the-shelf features. Refining a ViT-H, pre-trained with data2vec 2.0 on ImageNet-1K, sets a new state-of-the-art in linear probing (84.7%) and low-shot classification among models that are pre-trained on ImageNet-1K. At ImageNet-1K 1-shot classification, MIM-Refiner advances the state-of-the-art to 64.2%, outperforming larger models that were trained on up to 2000 times more data such as DINOv2-g, OpenCLIP-G and MAWS-6.5B.
- Abstract(参考訳): 我々は,MIMモデルに対するコントラスト学習強化であるMIM-Refinerを紹介する。
MIM-Refinerは、MIMモデル内の強い表現が一般的に中間層に存在するという洞察に動機づけられている。
そのため、MIM-Refinerは異なる中間層に接続された複数のコントラストヘッドを利用する。
各ヘッドでは、修正された近接オブジェクトがセマンティッククラスタを構成し、セマンティック情報をキャプチャして、オフザシェルフや微調整設定など、下流タスクのパフォーマンスを改善する。
精製プロセスは短くてシンプルですが、非常に効果的です。
数世紀以内に、MIMモデルの機能をサブパーから最先端のオフザシェルフ機能まで洗練します。
ImageNet-1KでData2vec 2.0で事前トレーニングされたViT-Hの精製は、リニアプローブ(84.7%)の新たな最先端と、ImageNet-1Kで事前トレーニングされたモデルのローショット分類を規定する。
ImageNet-1Kの1ショット分類では、MIM-Refinerは最先端の64.2%に進化し、DINOv2-g、OpenCLIP-G、MAWS-6.5Bなどの2000倍のデータでトレーニングされたより大きなモデルよりも優れている。
関連論文リスト
- Precision matters: Precision-aware ensemble for weakly supervised semantic segmentation [14.931551206723041]
Weakly Supervised Semantic (WSSS) は、画像レベルのラベルなどの弱い監督を、セグメンテーションモデルをトレーニングするために採用している。
我々はWSSSに適した高度なアンサンブルアプローチであるORANDNetを提案する。
論文 参考訳(メタデータ) (2024-06-28T03:58:02Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
Elect, Mask & Rescale-Merging (EMR-Merging) は既存のマージ手法と比較して優れた性能を示した。
EMR-Mergingはチューニング不要なので、データアベイラビリティや追加のトレーニングは必要ありません。
論文 参考訳(メタデータ) (2024-05-23T05:25:45Z) - MTP: Advancing Remote Sensing Foundation Model via Multi-Task Pretraining [73.81862342673894]
ファンデーションモデルは、様々な画像解釈タスクを強化することで、リモートセンシング(RS)のランドスケープを再構築した。
事前訓練されたモデルを下流のタスクに転送することは、イメージ分類やオブジェクト識別タスクとして事前訓練の定式化によるタスクの相違に遭遇する可能性がある。
SAMRSデータセット上で、セマンティックセグメンテーション、インスタンスセグメンテーション、回転オブジェクト検出を含むマルチタスクによる事前トレーニングを行う。
我々のモデルは、シーン分類、水平・回転物体検出、セマンティックセグメンテーション、変化検出など、様々なRS下流タスクに基づいて微調整される。
論文 参考訳(メタデータ) (2024-03-20T09:17:22Z) - Improving Pixel-based MIM by Reducing Wasted Modeling Capability [77.99468514275185]
浅い層から低レベルの特徴を明示的に利用して画素再構成を支援する手法を提案する。
私たちの知る限りでは、等方的アーキテクチャのためのマルチレベル特徴融合を体系的に研究するのは、私たちは初めてです。
提案手法は, 微調整では1.2%, 線形探索では2.8%, セマンティックセグメンテーションでは2.6%など, 大幅な性能向上をもたらす。
論文 参考訳(メタデータ) (2023-08-01T03:44:56Z) - FreMIM: Fourier Transform Meets Masked Image Modeling for Medical Image
Segmentation [37.465246717967595]
本稿では,医療画像のセグメンテーション作業の効率化を目的として,FreMIMというMIMベースの新しいフレームワークを提案する。
FreMIMは一貫してモデルパフォーマンスに大幅な改善をもたらす可能性がある。
論文 参考訳(メタデータ) (2023-04-21T10:23:34Z) - Masked Image Modeling with Local Multi-Scale Reconstruction [54.91442074100597]
Masked Image Modeling (MIM) は自己教師付き表現学習において顕著な成功を収めている。
既存のMIMモデルはエンコーダの最上層でのみ再構成タスクを実行する。
そこで我々は,下層と上層がそれぞれ微細かつ粗大な監視信号を再構成する局所的マルチスケール再構成を設計する。
論文 参考訳(メタデータ) (2023-03-09T13:42:04Z) - TinyMIM: An Empirical Study of Distilling MIM Pre-trained Models [31.16595289223858]
マスク付き画像モデリング(MIM)は、事前学習大型視覚変換器(ViT)に強く貢献する
しかし、現実世界のアプリケーションにとって重要な小さなモデルは、この事前学習アプローチの恩恵を受けることはできない。
我々は,MIMをベースとした大規模プレトレーニングモデルの成功を,より小さなモデルに伝達する蒸留技術について検討する。
論文 参考訳(メタデータ) (2023-01-03T18:59:54Z) - CAE v2: Context Autoencoder with CLIP Target [63.61868058214267]
マスク付き画像モデリング(MIM)は、画像パッチのマスキングと再構成によって視覚表現を学習する。
再建管理をCLIP表現に適用することはMIMに有効であることが証明されている。
CLIPをターゲットとしたMIMの精製戦略を検討するため,MIMにおける2つの重要な要素,すなわち,監督位置とマスク比について検討した。
論文 参考訳(メタデータ) (2022-11-17T18:58:33Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
未知タスクの視覚言語モデルのためのモデル非依存型マルチタスクファインチューニング(MAMF)を提案する。
モデルに依存しないメタラーニング(MAML)と比較して、MAMFは二段階最適化を捨て、一階勾配のみを使用する。
MAMFは5つのベンチマークデータセット上で、数ショットの転送学習において古典的な微調整法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-03-09T17:26:53Z) - IMACS: Image Model Attribution Comparison Summaries [16.80986701058596]
我々は,勾配に基づくモデル属性とアグリゲーションと可視化技術を組み合わせたIMACSを提案する。
IMACSは評価データセットから適切な入力特徴を抽出し、類似性に基づいてクラスタ化し、類似した入力特徴に対するモデル属性の違いを可視化する。
本稿では,衛星画像上で訓練した2つのモデル間の領域シフトによる行動差を明らかにする方法を示す。
論文 参考訳(メタデータ) (2022-01-26T21:35:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。