論文の概要: IMACS: Image Model Attribution Comparison Summaries
- arxiv url: http://arxiv.org/abs/2201.11196v1
- Date: Wed, 26 Jan 2022 21:35:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-29 04:26:09.003336
- Title: IMACS: Image Model Attribution Comparison Summaries
- Title(参考訳): imacs: 画像モデルによる比較要約
- Authors: Eldon Schoop, Ben Wedin, Andrei Kapishnikov, Tolga Bolukbasi, Michael
Terry
- Abstract要約: 我々は,勾配に基づくモデル属性とアグリゲーションと可視化技術を組み合わせたIMACSを提案する。
IMACSは評価データセットから適切な入力特徴を抽出し、類似性に基づいてクラスタ化し、類似した入力特徴に対するモデル属性の違いを可視化する。
本稿では,衛星画像上で訓練した2つのモデル間の領域シフトによる行動差を明らかにする方法を示す。
- 参考スコア(独自算出の注目度): 16.80986701058596
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Developing a suitable Deep Neural Network (DNN) often requires significant
iteration, where different model versions are evaluated and compared. While
metrics such as accuracy are a powerful means to succinctly describe a model's
performance across a dataset or to directly compare model versions,
practitioners often wish to gain a deeper understanding of the factors that
influence a model's predictions. Interpretability techniques such as
gradient-based methods and local approximations can be used to examine small
sets of inputs in fine detail, but it can be hard to determine if results from
small sets generalize across a dataset. We introduce IMACS, a method that
combines gradient-based model attributions with aggregation and visualization
techniques to summarize differences in attributions between two DNN image
models. More specifically, IMACS extracts salient input features from an
evaluation dataset, clusters them based on similarity, then visualizes
differences in model attributions for similar input features. In this work, we
introduce a framework for aggregating, summarizing, and comparing the
attribution information for two models across a dataset; present visualizations
that highlight differences between 2 image classification models; and show how
our technique can uncover behavioral differences caused by domain shift between
two models trained on satellite images.
- Abstract(参考訳): 適切なディープニューラルネットワーク(dnn)を開発するには、異なるモデルバージョンを評価し比較する、かなりのイテレーションが必要となる。
正確性などのメトリクスは、データセット全体にわたるモデルのパフォーマンスを簡潔に記述したり、モデルバージョンを直接比較するための強力な手段である一方、実践者はモデルの予測に影響を与える要因についてより深く理解したいと考えることが多い。
勾配法や局所近似のような解釈可能性技術は、小さな入力の集合を詳細に調べるために用いられるが、小さな集合の結果がデータセット全体にわたって一般化されるかどうかを判断することは困難である。
2つのDNN画像モデル間の属性の違いを要約するために、勾配モデル属性と集約と可視化技術を組み合わせたIMACSを提案する。
より具体的には、IMACSは評価データセットから健全な入力特徴を抽出し、類似性に基づいてクラスタ化し、類似した入力特徴に対するモデル属性の違いを可視化する。
本研究では,データセット間での2つのモデルの帰属情報を集約し,要約し,比較するためのフレームワークを提案する。また,2つの画像分類モデルの違いを強調する可視化を行い,衛星画像上で訓練された2つのモデル間のドメインシフトに起因する行動の違いを明らかにする。
関連論文リスト
- Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
本稿では,言語誘導型生成対実画像を用いた分類モデル強化のための新しいフレームワークを提案する。
逆ファクト画像データセットを用いてモデルをテストすることにより、モデルの弱点を同定する。
我々は、分類モデルを微調整し強化するために、デファクトイメージを拡張データセットとして採用する。
論文 参考訳(メタデータ) (2024-06-19T08:07:14Z) - Image Similarity using An Ensemble of Context-Sensitive Models [2.9490616593440317]
ラベル付きデータに基づく画像類似性モデルの構築と比較に,より直感的なアプローチを提案する。
画像空間(R,A,B)におけるスパースサンプリングの課題と,文脈に基づくデータを用いたモデルにおけるバイアスに対処する。
実験の結果,構築したアンサンブルモデルは,最高の文脈依存モデルよりも5%高い性能を示した。
論文 参考訳(メタデータ) (2024-01-15T20:23:05Z) - The Importance of Downstream Networks in Digital Pathology Foundation Models [1.689369173057502]
162のアグリゲーションモデル構成を持つ3つの異なるデータセットにまたがる7つの特徴抽出モデルを評価する。
多くの特徴抽出器モデルの性能は顕著に類似していることが判明した。
論文 参考訳(メタデータ) (2023-11-29T16:54:25Z) - COSE: A Consistency-Sensitivity Metric for Saliency on Image
Classification [21.3855970055692]
本稿では,画像分類タスクにおいて,視覚の先行値を用いてサリエンシ手法の性能を評価する指標について述べる。
しかし,ほとんどの手法では,畳み込みモデルよりもトランスフォーマーモデルの方がよく説明できる。
論文 参考訳(メタデータ) (2023-09-20T01:06:44Z) - Diffusion Models Beat GANs on Image Classification [37.70821298392606]
拡散モデルは、画像生成、復調、塗装、超解像、操作などの最先端の手法として注目されている。
本稿では,これらの埋め込みは識別情報を含むため,ノイズ予測タスクを超えて有用であり,分類にも活用できることを示す。
注意深い特徴選択とプーリングにより、拡散モデルは、分類タスクにおいて同等な生成的識別的手法より優れていることが判明した。
論文 参考訳(メタデータ) (2023-07-17T17:59:40Z) - Interpretable Differencing of Machine Learning Models [20.99877540751412]
2つのMLモデルの出力の相似性関数の予測の1つとしてモデル差分問題の定式化を行う。
ジョイントサロゲートツリー(JST)は、この2つのモデルのための2つの連結された決定木サロゲートから構成される。
JSTは違いを直感的に表現し、モデル決定ロジックのコンテキストに変化を配置します。
論文 参考訳(メタデータ) (2023-06-10T16:15:55Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
本研究では, 合成性能の評価に関する実証的研究を行い, 生成モデルの代表としてGAN(Generative Adversarial Network)を用いた。
特に、表現空間におけるデータポイントの表現方法、選択したサンプルを用いた公平距離の計算方法、各集合から使用可能なインスタンス数など、さまざまな要素の詳細な分析を行う。
論文 参考訳(メタデータ) (2023-04-04T17:54:32Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
カノニカル相関解析 (CCA) は, 2つのビューの特徴抽出手法である。
本稿では,入力依存の正準相関モデルをトレーニングするための新しい動的スケーリング手法を提案する。
論文 参考訳(メタデータ) (2022-03-23T12:52:49Z) - Multivariate Data Explanation by Jumping Emerging Patterns Visualization [78.6363825307044]
多変量データセットにおけるパターンの識別と視覚的解釈を支援するVAX(multiVariate dAta eXplanation)を提案する。
既存の類似のアプローチとは異なり、VAXはJumping Emerging Patternsという概念を使って、複数の多様化したパターンを特定し、集約し、データ変数のロジックの組み合わせを通して説明を生成する。
論文 参考訳(メタデータ) (2021-06-21T13:49:44Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
本稿では,名前付きエンティティ認識(NER)タスクに対する一般的な評価手法を提案する。
提案手法は,モデルとデータセットの違いと,それらの間の相互作用を解釈することを可能にする。
分析ツールを利用可能にすることで、将来の研究者が同様の分析を実行し、この分野の進歩を促進することができる。
論文 参考訳(メタデータ) (2020-11-13T10:53:27Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。