論文の概要: Large Scale Constrained Clustering With Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2402.10177v1
- Date: Thu, 15 Feb 2024 18:27:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-16 14:25:49.944773
- Title: Large Scale Constrained Clustering With Reinforcement Learning
- Title(参考訳): 強化学習による大規模制約クラスタリング
- Authors: Benedikt Schesch, Marco Caserta
- Abstract要約: ネットワークが与えられた場合、各ノードではなく、クラスタレベルでリソースを割り当てることによって、リソースの割り当てと使用効率が向上する。
本稿では,この制約付きクラスタリング問題を強化学習を用いて解く手法を提案する。
結果の節では,大規模インスタンスにおいても,アルゴリズムが最適に近い解を見つけることを示す。
- 参考スコア(独自算出の注目度): 1.3597551064547502
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given a network, allocating resources at clusters level, rather than at each
node, enhances efficiency in resource allocation and usage. In this paper, we
study the problem of finding fully connected disjoint clusters to minimize the
intra-cluster distances and maximize the number of nodes assigned to the
clusters, while also ensuring that no two nodes within a cluster exceed a
threshold distance. While the problem can easily be formulated using a binary
linear model, traditional combinatorial optimization solvers struggle when
dealing with large-scale instances. We propose an approach to solve this
constrained clustering problem via reinforcement learning. Our method involves
training an agent to generate both feasible and (near) optimal solutions. The
agent learns problem-specific heuristics, tailored to the instances encountered
in this task. In the results section, we show that our algorithm finds near
optimal solutions, even for large scale instances.
- Abstract(参考訳): ネットワークが与えられた場合、各ノードではなくクラスタレベルでリソースを割り当てると、リソースの割り当てと使用効率が向上する。
本稿では,クラスタ間距離を最小化し,クラスタに割り当てられたノード数を最大化すると同時に,クラスタ内の2つのノードがしきい値距離を超えないようにする。
問題はバイナリ線形モデルで簡単に定式化できるが、大規模なインスタンスを扱う場合、従来の組合せ最適化は困難である。
本稿では,強化学習による制約付きクラスタリング問題の解法を提案する。
提案手法は, 最適解と最適解の両方を生成するようにエージェントを訓練することを含む。
エージェントは、このタスクで遭遇したインスタンスに合わせて、問題固有のヒューリスティックスを学ぶ。
結果の節では,大規模インスタンスにおいても,アルゴリズムが最適に近い解を見つけることを示す。
関連論文リスト
- Stable Cluster Discrimination for Deep Clustering [7.175082696240088]
ディープクラスタリングは、インスタンスの表現(つまり、表現学習)を最適化し、固有のデータ分散を探索することができる。
結合された目的は、すべてのインスタンスが一様機能に崩壊する、自明な解決策を意味する。
本研究では,1段階クラスタリングにおいて,教師あり学習における一般的な識別タスクが不安定であることを示す。
新規な安定クラスタ識別(SeCu)タスクを提案し、それに応じて新しいハードネス対応クラスタリング基準を得ることができる。
論文 参考訳(メタデータ) (2023-11-24T06:43:26Z) - Gap-Free Clustering: Sensitivity and Robustness of SDP [6.996002801232415]
ブロックモデル(SBM)におけるグラフクラスタリングについて,大クラスタと小クラスタの両方の存在下で検討した。
以前の凸緩和アプローチは正確な回復を達成するため、$o(sqrtn)$の小さなクラスタを許可しないか、最小の回復クラスタと最大の非回復クラスタの間のサイズギャップを必要とする。
本研究では,これらの要求を除去し,クラスタサイズによらず,大規模クラスタを確実に復元する半定値プログラミング(SDP)に基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-29T21:27:21Z) - Federated K-Means Clustering via Dual Decomposition-based Distributed
Optimization [0.0]
本稿では,$Kのクラスタリング問題に対する分散トレーニングに双対分解を適用する方法について述べる。
トレーニングは、異なるノードにデータを分割し、コンセンサス制約を通じてこれらのノードをリンクすることで、分散的に行うことができる。
論文 参考訳(メタデータ) (2023-07-25T05:34:50Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
オンラインディープクラスタリング(オンラインディープクラスタリング)とは、機能抽出ネットワークとクラスタリングモデルを組み合わせて、クラスタラベルを処理された各新しいデータポイントまたはバッチに割り当てることである。
オフラインメソッドよりも高速で汎用性が高いが、オンラインクラスタリングは、エンコーダがすべての入力を同じポイントにマッピングし、すべてを単一のクラスタに配置する、崩壊したソリューションに容易に到達することができる。
本稿では,データ拡張を必要としない手法を提案する。
論文 参考訳(メタデータ) (2023-03-29T08:23:26Z) - Neural Capacitated Clustering [6.155158115218501]
本稿では,クラスタセンターへのポイントの割り当て確率を予測するニューラルネットワークを学習する,容量クラスタリング問題(CCP)の新しい手法を提案する。
人工データと2つの実世界のデータセットに関する実験では、我々のアプローチは文学の最先端の数学的および解法よりも優れています。
論文 参考訳(メタデータ) (2023-02-10T09:33:44Z) - Near-Optimal Correlation Clustering with Privacy [37.94795032297396]
相関クラスタリングは教師なし学習における中心的な問題である。
本稿では,相関クラスタリング問題と証明可能なプライバシ保証のための,シンプルで効率的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-02T22:30:19Z) - Meta Clustering Learning for Large-scale Unsupervised Person
Re-identification [124.54749810371986]
メタクラスタリング学習(MCL)と呼ばれる「大規模タスクのための小さなデータ」パラダイムを提案する。
MCLは、第1フェーズのトレーニングのためにコンピューティングを節約するためにクラスタリングを介して、未ラベルデータのサブセットを擬似ラベル付けするのみである。
提案手法は計算コストを大幅に削減すると同時に,従来よりも優れた性能を実現している。
論文 参考訳(メタデータ) (2021-11-19T04:10:18Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - A Low Complexity Decentralized Neural Net with Centralized Equivalence
using Layer-wise Learning [49.15799302636519]
我々は、分散処理ノード(労働者)で最近提案された大規模ニューラルネットワークをトレーニングするために、低複雑性分散学習アルゴリズムを設計する。
我々の設定では、トレーニングデータは作業者間で分散されるが、プライバシやセキュリティ上の懸念からトレーニングプロセスでは共有されない。
本研究では,データが一箇所で利用可能であるかのように,等価な学習性能が得られることを示す。
論文 参考訳(メタデータ) (2020-09-29T13:08:12Z) - Local Graph Clustering with Network Lasso [90.66817876491052]
局所グラフクラスタリングのためのネットワークLasso法の統計的および計算的性質について検討する。
nLassoによって提供されるクラスタは、クラスタ境界とシードノードの間のネットワークフローを通じて、エレガントに特徴付けられる。
論文 参考訳(メタデータ) (2020-04-25T17:52:05Z) - Learning to Cluster Faces via Confidence and Connectivity Estimation [136.5291151775236]
重複する部分グラフを多数必要とせず,完全に学習可能なクラスタリングフレームワークを提案する。
提案手法はクラスタリングの精度を大幅に向上させ,その上で訓練した認識モデルの性能を向上させるが,既存の教師付き手法に比べて桁違いに効率的である。
論文 参考訳(メタデータ) (2020-04-01T13:39:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。