論文の概要: Gap-Free Clustering: Sensitivity and Robustness of SDP
- arxiv url: http://arxiv.org/abs/2308.15642v2
- Date: Tue, 18 Jun 2024 17:13:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-20 05:13:54.182865
- Title: Gap-Free Clustering: Sensitivity and Robustness of SDP
- Title(参考訳): ギャップフリークラスタリング:SDPの感度とロバスト性
- Authors: Matthew Zurek, Yudong Chen,
- Abstract要約: ブロックモデル(SBM)におけるグラフクラスタリングについて,大クラスタと小クラスタの両方の存在下で検討した。
以前の凸緩和アプローチは正確な回復を達成するため、$o(sqrtn)$の小さなクラスタを許可しないか、最小の回復クラスタと最大の非回復クラスタの間のサイズギャップを必要とする。
本研究では,これらの要求を除去し,クラスタサイズによらず,大規模クラスタを確実に復元する半定値プログラミング(SDP)に基づくアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 6.996002801232415
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study graph clustering in the Stochastic Block Model (SBM) in the presence of both large clusters and small, unrecoverable clusters. Previous convex relaxation approaches achieving exact recovery do not allow any small clusters of size $o(\sqrt{n})$, or require a size gap between the smallest recovered cluster and the largest non-recovered cluster. We provide an algorithm based on semidefinite programming (SDP) which removes these requirements and provably recovers large clusters regardless of the remaining cluster sizes. Mid-sized clusters pose unique challenges to the analysis, since their proximity to the recovery threshold makes them highly sensitive to small noise perturbations and precludes a closed-form candidate solution. We develop novel techniques, including a leave-one-out-style argument which controls the correlation between SDP solutions and noise vectors even when the removal of one row of noise can drastically change the SDP solution. We also develop improved eigenvalue perturbation bounds of potential independent interest. Our results are robust to certain semirandom settings that are challenging for alternative algorithms. Using our gap-free clustering procedure, we obtain efficient algorithms for the problem of clustering with a faulty oracle with superior query complexities, notably achieving $o(n^2)$ sample complexity even in the presence of a large number of small clusters. Our gap-free clustering procedure also leads to improved algorithms for recursive clustering.
- Abstract(参考訳): 本研究では,SBM(Stochastic Block Model)におけるグラフクラスタリングについて検討した。
これまでの凸緩和アプローチでは、正確な回復を達成するには、$o(\sqrt{n})$の小さなクラスタを許可しないか、最小のクラスタと最大の非回復クラスタの間のサイズギャップを必要とする。
本研究では,これらの要求を除去し,クラスタサイズによらず,大規模クラスタを確実に復元する半定値プログラミング(SDP)に基づくアルゴリズムを提案する。
中規模のクラスタは、リカバリしきい値に近いため、小さなノイズの摂動に非常に敏感になり、クローズドフォームの候補解が妨げられるため、分析に固有の課題が生じる。
本研究では,一行のノイズを除去しても,SDP解と雑音ベクトルの相関を制御できる新たな手法を開発した。
また、潜在的な独立利害の固有値摂動境界を改良した。
我々の結果は、代替アルゴリズムに挑戦するある種の半ランダムな設定に対して堅牢である。
このギャップフリークラスタリング手法を用いることで,多数の小さなクラスタが存在する場合でも,クエリの複雑度に優れた欠陥を持つオラクルによるクラスタリングの問題に対して,より効率的なアルゴリズムが得られます。
我々のギャップフリークラスタリング手法は再帰的クラスタリングのアルゴリズムの改善にも繋がる。
関連論文リスト
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means 1-step dimensionality reduction clustering method は,クラスタリングタスクにおける次元性の呪いに対処する上で,いくつかの進歩をもたらした。
本稿では,K-meansに多様体学習を統合する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:59:51Z) - Large Scale Constrained Clustering With Reinforcement Learning [1.3597551064547502]
ネットワークが与えられた場合、各ノードではなく、クラスタレベルでリソースを割り当てることによって、リソースの割り当てと使用効率が向上する。
本稿では,この制約付きクラスタリング問題を強化学習を用いて解く手法を提案する。
結果の節では,大規模インスタンスにおいても,アルゴリズムが最適に近い解を見つけることを示す。
論文 参考訳(メタデータ) (2024-02-15T18:27:18Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
観測されたラベルを用いてクラスタを復元する効率的なアルゴリズムを考案する。
本稿では,期待値と高い確率でこれらの下位境界との性能を一致させる最初のアルゴリズムであるIACを提案する。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - Convex Clustering through MM: An Efficient Algorithm to Perform
Hierarchical Clustering [1.0589208420411012]
本稿では,クラスタ融合と高効率更新方式を用いた反復アルゴリズムCCMMによる凸クラスタリングを提案する。
現在のデスクトップコンピュータでは、CCMMは、7次元空間に100万以上のオブジェクトを含む凸クラスタリング問題を効率的に解決する。
論文 参考訳(メタデータ) (2022-11-03T15:07:51Z) - Recovering Unbalanced Communities in the Stochastic Block Model With
Application to Clustering with a Faulty Oracle [9.578056676899203]
オラクルブロックモデル(英: Oracle block model、SBM)は、ネットワークにおけるグラフクラスタリングやコミュニティ検出を研究するための基礎モデルである。
我々は,SBMのコミュニティを様々な大きさのコミュニティで復元する,シンプルなSVDベースのアルゴリズムを提供する。
論文 参考訳(メタデータ) (2022-02-17T08:51:19Z) - Differentially-Private Clustering of Easy Instances [67.04951703461657]
異なるプライベートクラスタリングでは、個々のデータポイントに関する情報を公開せずに、$k$のクラスタセンターを特定することが目標だ。
我々は、データが"簡単"である場合にユーティリティを提供する実装可能な差分プライベートクラスタリングアルゴリズムを提供する。
我々は、非プライベートクラスタリングアルゴリズムを簡単なインスタンスに適用し、結果をプライベートに組み合わせることのできるフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-29T08:13:56Z) - Lattice-Based Methods Surpass Sum-of-Squares in Clustering [98.46302040220395]
クラスタリングは教師なし学習における基本的なプリミティブである。
最近の研究は、低次手法のクラスに対する低い境界を確立している。
意外なことに、この特定のクラスタリングモデルのtextitdoesは、統計的-計算的ギャップを示さない。
論文 参考訳(メタデータ) (2021-12-07T18:50:17Z) - Correlation Clustering Reconstruction in Semi-Adversarial Models [70.11015369368272]
相関クラスタリングは多くのアプリケーションにおいて重要なクラスタリング問題である。
本研究では,ランダムノイズや対向的な修正によって崩壊した潜伏クラスタリングを再構築しようとする,この問題の再構築版について検討する。
論文 参考訳(メタデータ) (2021-08-10T14:46:17Z) - Exact Recovery of Mangled Clusters with Same-Cluster Queries [20.03712152278538]
半教師付きアクティブクラスタリングフレームワークにおけるクラスタリカバリ問題について検討する。
我々は、$n$ポイントを$k$クラスタに分割するアルゴリズムを設計し、$O(k3 ln k ln n)$oracleクエリと$tildeO(kn + k3)$でクラスタを非分類エラーで復元する。
論文 参考訳(メタデータ) (2020-06-08T15:27:58Z) - Computationally efficient sparse clustering [67.95910835079825]
我々はPCAに基づく新しいクラスタリングアルゴリズムの有限サンプル解析を行う。
ここでは,ミニマックス最適誤クラスタ化率を,体制$|theta infty$で達成することを示す。
論文 参考訳(メタデータ) (2020-05-21T17:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。