論文の概要: Autonomous Vehicle Patrolling Through Deep Reinforcement Learning:
Learning to Communicate and Cooperate
- arxiv url: http://arxiv.org/abs/2402.10222v1
- Date: Sun, 28 Jan 2024 14:29:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-25 17:14:05.221296
- Title: Autonomous Vehicle Patrolling Through Deep Reinforcement Learning:
Learning to Communicate and Cooperate
- Title(参考訳): 深層強化学習を通した自律走行車:コミュニケーションと協力を学ぶ
- Authors: Chenhao Tong, Maria A. Rodriguez, Richard O. Sinnott
- Abstract要約: 最適なパトロール戦略を見つけることは、風や風景のような未知の環境要因のために困難である。
エージェントは、障害が発生した場合にパトロール中に協力するための独自の通信プロトコルを開発するように訓練される。
この解はシミュレーション実験によって検証され、様々な観点から最先端のパトロールソリューションと比較される。
- 参考スコア(独自算出の注目度): 3.79830302036482
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Autonomous vehicles are suited for continuous area patrolling problems.
Finding an optimal patrolling strategy can be challenging due to unknown
environmental factors, such as wind or landscape; or autonomous vehicles'
constraints, such as limited battery life or hardware failures. Importantly,
patrolling large areas often requires multiple agents to collectively
coordinate their actions. However, an optimal coordination strategy is often
non-trivial to be manually defined due to the complex nature of patrolling
environments. In this paper, we consider a patrolling problem with
environmental factors, agent limitations, and three typical cooperation
problems -- collision avoidance, congestion avoidance, and patrolling target
negotiation. We propose a multi-agent reinforcement learning solution based on
a reinforced inter-agent learning (RIAL) method. With this approach, agents are
trained to develop their own communication protocol to cooperate during
patrolling where faults can and do occur. The solution is validated through
simulation experiments and is compared with several state-of-the-art patrolling
solutions from different perspectives, including the overall patrol
performance, the collision avoidance performance, the efficiency of battery
recharging strategies, and the overall fault tolerance.
- Abstract(参考訳): 自動運転車は、継続的な地域パトロール問題に向いている。
最適なパトロール戦略を見つけることは、風や風景のような未知の環境要因や、バッテリー寿命の制限やハードウェアの故障といった自動運転車の制約のために難しい可能性がある。
重要なことに、大きな地域をパトロールするには、複数のエージェントが集団で行動を調整する必要がある。
しかしながら、最適な調整戦略は、パトロール環境の複雑な性質のために手動で定義することがしばしば非自明である。
本稿では, 環境要因, エージェント制限, および3つの典型的な協力問題である衝突回避, 混雑回避, パトロール対象交渉に関するパトロール問題を考察する。
本稿では,強化型エージェント間学習(RIAL)法に基づくマルチエージェント強化学習ソリューションを提案する。
このアプローチにより、エージェントはパトロール中の障害の発生と発生を協調する独自の通信プロトコルを開発するように訓練される。
このソリューションはシミュレーション実験によって検証され、全体的なパトロール性能、衝突回避性能、バッテリリリチャージ戦略の効率、フォールトトレランスなど、さまざまな観点から最先端のパトロールソリューションと比較される。
関連論文リスト
- Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework [79.088116316919]
コネクテッド・オートモービルズ(CAV)は世界中の道路試験を開始したが、複雑なシナリオにおける安全性と効率性はまだ十分ではない。
本稿では,対話型かつ学習可能なLLM駆動協調運転フレームワークCoDrivingLLMを提案する。
論文 参考訳(メタデータ) (2024-09-19T14:36:00Z) - Multi-Agent Reinforcement Learning for Joint Police Patrol and Dispatch [13.336551874123796]
本稿では,複数エージェントのパトロールとディスパッチを協調的に最適化し,迅速な応答時間を示すポリシーを学習するための新しい手法を提案する。
本手法は,各パトロールラーを独立Qラーナー(エージェント)として,状態-作用値を表す共有深度Q-ネットワークで処理する。
この異種多エージェント強化学習アプローチは,パトロールやディスパッチのみを最適化するポリシを学習可能であることを実証する。
論文 参考訳(メタデータ) (2024-09-03T19:19:57Z) - RACER: Epistemic Risk-Sensitive RL Enables Fast Driving with Fewer Crashes [57.319845580050924]
本稿では,リスク感応制御と適応行動空間のカリキュラムを組み合わせた強化学習フレームワークを提案する。
提案アルゴリズムは,現実世界のオフロード運転タスクに対して,高速なポリシーを学習可能であることを示す。
論文 参考訳(メタデータ) (2024-05-07T23:32:36Z) - Multi-Agent Deep Reinforcement Learning for Cooperative and Competitive
Autonomous Vehicles using AutoDRIVE Ecosystem [1.1893676124374688]
我々は、ニジェールとF1TENTHの物理的に正確でグラフィカルなデジタル双対を開発するために、AutoDRIVE Ecosystemを導入する。
まず,複数エージェントの学習環境だけでなく,限られた状態情報を相互に共有する一組の協調車両(Nigel)を用いた交差点問題について検討する。
次に、異なる車両群(F1TENTH)を用いて、個別のポリシーアプローチを用いたマルチエージェント学習環境において、対向的なヘッドツーヘッド自律レース問題を調査する。
論文 参考訳(メタデータ) (2023-09-18T02:43:59Z) - Robust Driving Policy Learning with Guided Meta Reinforcement Learning [49.860391298275616]
本稿では,ソーシャルカーの多種多様な運転方針を一つのメタ政治として訓練する効率的な方法を提案する。
ソーシャルカーのインタラクションに基づく報酬関数をランダム化することにより、多様な目的を生み出し、メタ政治を効率的に訓練することができる。
本研究では,社会自動車が学習メタ政治によって制御される環境を利用して,エゴ自動車の運転方針の堅牢性を高めるためのトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2023-07-19T17:42:36Z) - Convergence of Communications, Control, and Machine Learning for Secure
and Autonomous Vehicle Navigation [78.60496411542549]
接続された自動運転車(CAV)は、交通事故におけるヒューマンエラーを低減し、道路効率を向上し、様々なタスクを実行する。これらのメリットを享受するためには、CAVが目標とする目的地へ自律的にナビゲートする必要がある。
本稿では,通信理論,制御理論,機械学習の収束を利用して,効果的なCAVナビゲーションを実現する手法を提案する。
論文 参考訳(メタデータ) (2023-07-05T21:38:36Z) - Safe Model-Based Multi-Agent Mean-Field Reinforcement Learning [48.667697255912614]
平均場強化学習は、同一エージェントの無限集団と相互作用する代表エージェントのポリシーに対処する。
モデルベースの平均場強化学習アルゴリズムであるSafe-M$3$-UCRLを提案する。
本アルゴリズムは,低需要領域におけるサービスアクセシビリティを確保しつつ,重要な領域における需要を効果的に満たす。
論文 参考訳(メタデータ) (2023-06-29T15:57:07Z) - An Energy-aware and Fault-tolerant Deep Reinforcement Learning based
approach for Multi-agent Patrolling Problems [0.5008597638379226]
モデルのない深層マルチエージェント強化学習に基づく手法を提案する。
エージェントは、様々な未知のダイナミクスや要因で環境をパトロールするように訓練される。
連続的なパトロールを支援するために自動的に充電することができる。
このアーキテクチャは、パトロールシステムを提供し、エージェントの障害を許容し、サプリメントエージェントを追加して、失敗したエージェントを置き換えたり、全体的なパトロール性能を向上させることができる。
論文 参考訳(メタデータ) (2022-12-16T01:38:35Z) - Real-time Cooperative Vehicle Coordination at Unsignalized Road
Intersections [7.860567520771493]
信号のない道路交差点での協調作業は、連結車両と自動車両の安全運転交通スループットを向上させることを目的としている。
我々はモデルフリーなマルコフ決定プロセス(MDP)を導入し、深層強化学習フレームワークにおける双遅延Deep Deterministic Policy(TD3)に基づく戦略によりそれに取り組む。
提案手法は, 準定常調整シナリオにおいて, ほぼ最適性能を達成し, 現実的な連続流れの制御を大幅に改善できることが示唆された。
論文 参考訳(メタデータ) (2022-05-03T02:56:02Z) - Coach-assisted Multi-Agent Reinforcement Learning Framework for
Unexpected Crashed Agents [120.91291581594773]
本稿では,予期せぬクラッシュを伴う協調型マルチエージェント強化学習システムの公式な定式化について述べる。
本稿では,教師支援型多エージェント強化学習フレームワークを提案する。
私たちの知る限りでは、この研究はマルチエージェントシステムにおける予期せぬクラッシュを初めて研究したものです。
論文 参考訳(メタデータ) (2022-03-16T08:22:45Z) - Supervised Permutation Invariant Networks for Solving the CVRP with
Bounded Fleet Size [3.5235974685889397]
車両ルーティング問題などの最適化問題を解くための学習は、大きな計算上の利点をもたらす。
本研究では,アプリオリ固定数の車両を尊重しながら,スクラッチから完全なツアー計画を構築する強力な教師付きディープラーニングフレームワークを提案する。
効率的な後処理方式と組み合わせることで,教師付きアプローチはより高速かつ容易にトレーニングできるだけでなく,競争力のある結果が得られる。
論文 参考訳(メタデータ) (2022-01-05T10:32:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。