論文の概要: Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework
- arxiv url: http://arxiv.org/abs/2409.12812v2
- Date: Sun, 22 Sep 2024 09:31:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 13:23:33.515000
- Title: Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework
- Title(参考訳): 対話的で学習可能な協調運転自動化を目指して--大規模言語モデル駆動意思決定フレームワーク
- Authors: Shiyu Fang, Jiaqi Liu, Mingyu Ding, Yiming Cui, Chen Lv, Peng Hang, Jian Sun,
- Abstract要約: コネクテッド・オートモービルズ(CAV)は世界中の道路試験を開始したが、複雑なシナリオにおける安全性と効率性はまだ十分ではない。
本稿では,対話型かつ学習可能なLLM駆動協調運転フレームワークCoDrivingLLMを提案する。
- 参考スコア(独自算出の注目度): 79.088116316919
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: At present, Connected Autonomous Vehicles (CAVs) have begun to open road testing around the world, but their safety and efficiency performance in complex scenarios is still not satisfactory. Cooperative driving leverages the connectivity ability of CAVs to achieve synergies greater than the sum of their parts, making it a promising approach to improving CAV performance in complex scenarios. However, the lack of interaction and continuous learning ability limits current cooperative driving to single-scenario applications and specific Cooperative Driving Automation (CDA). To address these challenges, this paper proposes CoDrivingLLM, an interactive and learnable LLM-driven cooperative driving framework, to achieve all-scenario and all-CDA. First, since Large Language Models(LLMs) are not adept at handling mathematical calculations, an environment module is introduced to update vehicle positions based on semantic decisions, thus avoiding potential errors from direct LLM control of vehicle positions. Second, based on the four levels of CDA defined by the SAE J3216 standard, we propose a Chain-of-Thought (COT) based reasoning module that includes state perception, intent sharing, negotiation, and decision-making, enhancing the stability of LLMs in multi-step reasoning tasks. Centralized conflict resolution is then managed through a conflict coordinator in the reasoning process. Finally, by introducing a memory module and employing retrieval-augmented generation, CAVs are endowed with the ability to learn from their past experiences. We validate the proposed CoDrivingLLM through ablation experiments on the negotiation module, reasoning with different shots experience, and comparison with other cooperative driving methods.
- Abstract(参考訳): 現在、コネクテッド・オートモービルズ(CAV)は世界中の道路試験を開始したが、複雑なシナリオにおける安全性と効率性はまだ不十分である。
協調運転は、CAVの接続能力を活用して、複雑なシナリオにおいてCAVの性能を改善するための有望なアプローチとなる。
しかしながら、インタラクションと継続的学習能力の欠如は、現在の協調運転を単一シナリオアプリケーションと特定の協調運転自動化(CDA)に制限する。
これらの課題に対処するため,本研究では,対話型かつ学習可能なLLM駆動協調運転フレームワークであるCoDrivingLLMを提案し,全シナリオと全CDAを実現する。
まず,Large Language Models (LLMs) は数学的計算に適さないため,セマンティックな決定に基づく車両位置の更新を行う環境モジュールを導入し,車両位置のLLM制御による潜在的なエラーを回避する。
第2に、SAE J3216規格で定義された4段階のCDAに基づいて、状態認識、意図共有、交渉、意思決定を含むChain-of-Thought(COT)ベースの推論モジュールを提案し、多段階推論タスクにおけるLCMの安定性を向上させる。
中央集権的な紛争解決は、推論プロセスのコンフリクトコーディネータを通じて管理される。
最後に、メモリモジュールを導入し、検索拡張世代を採用することで、CAVには過去の経験から学ぶ能力が与えられている。
提案したCoDrivingLLMは,交渉モジュール上でのアブレーション実験,ショット経験の相違による推論,および他の協調運転法との比較により検証した。
関連論文リスト
- CoMAL: Collaborative Multi-Agent Large Language Models for Mixed-Autonomy Traffic [11.682456863110767]
CoMALは、交通の流れを最適化するために、自動運転車間のコラボレーションによって、混在する自律交通問題に対処するために設計されたフレームワークである。
CoMALは大きな言語モデル上に構築されており、対話的な交通シミュレーション環境で動作する。
論文 参考訳(メタデータ) (2024-10-18T10:53:44Z) - SPformer: A Transformer Based DRL Decision Making Method for Connected Automated Vehicles [9.840325772591024]
本稿ではトランスフォーマーと強化学習アルゴリズムに基づくCAV意思決定アーキテクチャを提案する。
学習可能なポリシートークンは、多車連携ポリシーの学習媒体として使用される。
我々のモデルは交通シナリオにおける車両の全ての状態情報をうまく活用することができる。
論文 参考訳(メタデータ) (2024-09-23T15:16:35Z) - Making Large Language Models Better Planners with Reasoning-Decision Alignment [70.5381163219608]
マルチモーダリティ強化LLMに基づくエンドツーエンド意思決定モデルを提案する。
ペア化されたCoTと計画結果との推論・決定アライメントの制約を提案する。
提案する大規模言語プランナをRDA-Driverとして推論・決定アライメントする。
論文 参考訳(メタデータ) (2024-08-25T16:43:47Z) - KoMA: Knowledge-driven Multi-agent Framework for Autonomous Driving with Large Language Models [15.951550445568605]
自律エージェントとしての大規模言語モデル(LLM)は、知識駆動的な方法で現実の課題に取り組むための新しい道筋を提供する。
我々は,マルチエージェントインタラクション,マルチステップ計画,共有メモリ,ランキングベースのリフレクションモジュールからなるKoMAフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-19T12:13:08Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
本稿では,Large Language Models (LLM) の自律運転システムへの統合について検討する。
LLMは行動計画におけるインテリジェントな意思決定者であり、文脈的安全学習のための安全検証シールドを備えている。
適応型LLM条件モデル予測制御(MPC)と状態機械を用いたLLM対応対話型行動計画スキームという,シミュレーション環境における2つの重要な研究について述べる。
論文 参考訳(メタデータ) (2023-11-28T03:13:09Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
この作業では、複雑な自律運転シナリオの意思決定コンポーネントとして、Large Language Models(LLM)を採用している。
大規模実験により,提案手法は単車載タスクのベースラインアプローチを一貫して超えるだけでなく,複数車載コーディネートにおいても複雑な運転動作の処理にも有効であることが示された。
論文 参考訳(メタデータ) (2023-10-04T17:59:49Z) - Convergence of Communications, Control, and Machine Learning for Secure
and Autonomous Vehicle Navigation [78.60496411542549]
接続された自動運転車(CAV)は、交通事故におけるヒューマンエラーを低減し、道路効率を向上し、様々なタスクを実行する。これらのメリットを享受するためには、CAVが目標とする目的地へ自律的にナビゲートする必要がある。
本稿では,通信理論,制御理論,機械学習の収束を利用して,効果的なCAVナビゲーションを実現する手法を提案する。
論文 参考訳(メタデータ) (2023-07-05T21:38:36Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
本稿では,車間認識を用いたエンドツーエンド学習モデルであるCOOPERNAUTを紹介する。
われわれのAutoCastSim実験は、我々の協調知覚駆動モデルが平均成功率を40%向上させることを示唆している。
論文 参考訳(メタデータ) (2022-05-04T17:55:12Z) - Real-time Cooperative Vehicle Coordination at Unsignalized Road
Intersections [7.860567520771493]
信号のない道路交差点での協調作業は、連結車両と自動車両の安全運転交通スループットを向上させることを目的としている。
我々はモデルフリーなマルコフ決定プロセス(MDP)を導入し、深層強化学習フレームワークにおける双遅延Deep Deterministic Policy(TD3)に基づく戦略によりそれに取り組む。
提案手法は, 準定常調整シナリオにおいて, ほぼ最適性能を達成し, 現実的な連続流れの制御を大幅に改善できることが示唆された。
論文 参考訳(メタデータ) (2022-05-03T02:56:02Z) - A Multi-Agent Reinforcement Learning Approach For Safe and Efficient
Behavior Planning Of Connected Autonomous Vehicles [21.132777568170702]
我々は、コネクテッド・自動運転車のための情報共有型強化学習フレームワークを設計する。
提案手法は, 平均速度と快適性の観点から, CAV システムの効率性を向上させることができることを示す。
我々は,共用視覚が早期に障害物を観測し,交通渋滞を避けるために行動を起こすのに役立つことを示すために,障害物回避シナリオを構築した。
論文 参考訳(メタデータ) (2020-03-09T19:15:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。