論文の概要: A Data-Driven Supervised Machine Learning Approach to Estimating Global
Ambient Air Pollution Concentrations With Associated Prediction Intervals
- arxiv url: http://arxiv.org/abs/2402.10248v1
- Date: Thu, 15 Feb 2024 11:09:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-19 18:43:45.157202
- Title: A Data-Driven Supervised Machine Learning Approach to Estimating Global
Ambient Air Pollution Concentrations With Associated Prediction Intervals
- Title(参考訳): データ駆動型監視機械学習による地球環境大気汚染濃度の予測間隔の推定
- Authors: Liam J Berrisford, Hugo Barbosa, Ronaldo Menezes
- Abstract要約: 我々は、時間的および空間的計測の欠如を示唆するスケーラブルでデータ駆動型の教師あり機械学習フレームワークを開発した。
このモデルは, 時間的および空間的計測の欠如を示唆し, NO$, O$_3$, PM$_10$, PM$_2.5$, SO$などの汚染物質の包括的データセットを生成するように設計されている。
モデルの性能について検討し,今後のモニタリングステーションの戦略的配置に関する洞察と勧告を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Global ambient air pollution, a transboundary challenge, is typically
addressed through interventions relying on data from spatially sparse and
heterogeneously placed monitoring stations. These stations often encounter
temporal data gaps due to issues such as power outages. In response, we have
developed a scalable, data-driven, supervised machine learning framework. This
model is designed to impute missing temporal and spatial measurements, thereby
generating a comprehensive dataset for pollutants including NO$_2$, O$_3$,
PM$_{10}$, PM$_{2.5}$, and SO$_2$. The dataset, with a fine granularity of
0.25$^{\circ}$ at hourly intervals and accompanied by prediction intervals for
each estimate, caters to a wide range of stakeholders relying on outdoor air
pollution data for downstream assessments. This enables more detailed studies.
Additionally, the model's performance across various geographical locations is
examined, providing insights and recommendations for strategic placement of
future monitoring stations to further enhance the model's accuracy.
- Abstract(参考訳): グローバル環境大気汚染は、通常、空間的に疎らで均一に配置された監視ステーションのデータに依存する介入によって対処される。
これらのステーションは停電などの問題により、時間的なデータギャップに遭遇することが多い。
これに対し、スケーラブルでデータ駆動型の教師あり機械学習フレームワークを開発した。
このモデルは、時間的および空間的な測定の欠如を招き、no$_2$, o$_3$, pm$_{10}$, pm$_{2.5}$, so$_2$を含む汚染物質の包括的なデータセットを生成するように設計されている。
データセットは、毎時0.25$^{\circ}$の細かな粒度を持ち、各推定値の予測間隔を伴っており、下流評価のための屋外大気汚染データに依存する幅広い利害関係者に対応している。
これによりより詳細な研究が可能になる。
さらに、モデルの性能を様々な地域にわたって検討し、モデル精度をさらに高めるため、将来の監視ステーションの戦略的配置に関する洞察と勧告を提供する。
関連論文リスト
- Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
我々は、TBN Granger Causalityという概念的微粒因果モデルを設計する。
次に, TBN Granger Causality を生成的に発見する TacSas という, エンドツーエンドの深部生成モデルを提案する。
気候予報のための気候指標ERA5と、極度気象警報のためのNOAAの極端気象基準でTacSasを試験する。
論文 参考訳(メタデータ) (2024-08-08T06:47:21Z) - Urban Air Pollution Forecasting: a Machine Learning Approach leveraging Satellite Observations and Meteorological Forecasts [0.11249583407496218]
大気汚染は公衆衛生、特に都市部において重大な脅威となる。
本研究では, センチネル5P衛星のデータ, 気象条件, トポロジカル特性を統合し, 5つの主要な汚染物質の将来レベルを予測する機械学習モデルを提案する。
論文 参考訳(メタデータ) (2024-05-30T10:02:53Z) - Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
都市全域にわたる地上監視ネットワークにおける大気質観測について検討する。
我々は過去と将来の共変分を現在の観測に埋め込む条件付きブロックを提案する。
将来の気象情報に対する条件付けは,過去の交通状況を考えるよりも影響が大きいことが判明した。
論文 参考訳(メタデータ) (2024-04-08T09:13:16Z) - Using remotely sensed data for air pollution assessment [0.0]
この研究の主な目的は、観測データがない場所で汚染物質濃度を推定できるモデルを作成することである。
2019年、イベリア半島の5種類の汚染物質の濃度を予測する機械学習モデルが開発された。
平均値が少し高くなる$O_3$と$PM10$を除いて、全てのモデルでRMSEを許容するクロスバリデーションを提示した。
論文 参考訳(メタデータ) (2024-02-04T14:27:28Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - Spatial-temporal Forecasting for Regions without Observations [13.805203053973772]
本研究では,歴史的観察を伴わない関心領域の時空間予測について検討した。
タスクに対してSTSMというモデルを提案する。
私たちの重要な洞察は、関心のある領域に類似している場所から学ぶことです。
論文 参考訳(メタデータ) (2024-01-19T06:26:05Z) - A Framework for Scalable Ambient Air Pollution Concentration Estimation [0.0]
英国では大気汚染が重要な問題であり、大気汚染濃度のデータが大気質の改善を目的とした介入の基礎となっている。
欠落した測度を埋めることにより,時間的・空間的データギャップに対処するデータ駆動型機械学習モデルフレームワークを提案する。
このアプローチは、2018年を通してイングランドの包括的なデータセットを1kmx1kmの時間分解能で提供する。
論文 参考訳(メタデータ) (2024-01-16T18:03:07Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
本稿では, エアロゾル粒子を用いた過酷で非構造的な地下環境からのマルチモーダルデータセットを提案する。
ロボットオペレーティング・システム(ROS)フォーマットのすべてのオンボードセンサーから、同期された生データ計測を含んでいる。
本研究の焦点は、時間的・空間的なデータの多様性を捉えることだけでなく、取得したデータに厳しい条件が及ぼす影響を示すことである。
論文 参考訳(メタデータ) (2023-04-27T20:21:18Z) - Predicting Future Occupancy Grids in Dynamic Environment with
Spatio-Temporal Learning [63.25627328308978]
本稿では,将来の占有予測を生成するための時間的予測ネットワークパイプラインを提案する。
現在のSOTAと比較して、我々の手法は3秒の長い水平線での占有を予測している。
我々は、さらなる研究を支援するために、nulisに基づくグリッド占有データセットを公開します。
論文 参考訳(メタデータ) (2022-05-06T13:45:32Z) - A deep mixture density network for outlier-corrected interpolation of
crowd-sourced weather data [3.1542695050861544]
本稿では,自動検出による環境変数のベイズ時間モデリングのための深層学習手法を提案する。
例を挙げると、1900年頃のイギリス諸島の民間の気象観測所と非公式の気象観測所のアーカイブである気象観測サイト(Met Office's Weather Observation Website)のデータを用いています。
論文 参考訳(メタデータ) (2022-01-25T18:54:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。