Evidence of P-wave Pairing in K2Cr3As3 Superconductors from Phase-sensitive Measurement
- URL: http://arxiv.org/abs/2408.07342v1
- Date: Wed, 14 Aug 2024 07:34:45 GMT
- Title: Evidence of P-wave Pairing in K2Cr3As3 Superconductors from Phase-sensitive Measurement
- Authors: Zhiyuan Zhang, Ziwei Dou, Anqi Wang, Cuiwei Zhang, Yu Hong, Xincheng Lei, Yue Pan, Zhongchen Xu, Zhipeng Xu, Yupeng Li, Guoan Li, Xiaofan Shi, Xingchen Guo, Xiao Deng, Zhaozheng Lyu, Peiling Li, Faming Qu, Guangtong Liu, Dong Su, Kun Jiang, Youguo Shi, Li Lu, Jie Shen, Jiangping Hu,
- Abstract summary: We fabricate superconducting quantum interference devices (SQUIDs) on exfoliated K2Cr3As3.
We observe that SQUIDs exhibit a pronounced second-order harmonic component sin(2phi) in the current-phase relation.
We conclude that the existence of the pi-phase is in favor of the p-wave pairing symmetry in K2Cr3As3.
- Score: 26.69408771617283
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: P-wave superconductors hold immense promise for both fundamental physics and practical applications due to their unusual pairing symmetry and potential topological superconductivity. However, the exploration of the p-wave superconductors has proved to be a complex endeavor. Not only are they rare in nature but also the identification of p-wave superconductors has been an arduous task in history. For example, phase-sensitive measurement, an experimental technique which can provide conclusive evidence for unconventional pairing, has not been implemented successfully to identify p-wave superconductors. Here, we study a recently discovered family of superconductors, A2Cr3As3 (A = K, Rb, Cs), which were proposed theoretically to be a candidate of p-wave superconductors. We fabricate superconducting quantum interference devices (SQUIDs) on exfoliated K2Cr3As3, and perform the phase-sensitive measurement. We observe that such SQUIDs exhibit a pronounced second-order harmonic component sin(2{\phi}) in the current-phase relation, suggesting the admixture of 0- and {\pi}-phase. By carefully examining the magnetic field dependence of the oscillation patterns of critical current and Shapiro steps under microwave irradiation, we reveal a crossover from 0- to {\pi}-dominating phase state and conclude that the existence of the {\pi}-phase is in favor of the p-wave pairing symmetry in K2Cr3As3.
Related papers
- Extracting the current-phase-relation of a monolithic three-dimensional
nano-constriction using a DC-current-tunable superconducting microwave cavity [0.0]
We present a niobium microwave cavity with a monolithically integrated, neon-ion-beam patterned 3D nano-constriction.
By design, we obtain a DC-current-tunable microwave circuit and characterize how the bias-current-dependent constriction properties impact the cavity resonance.
Our platform provides a useful method to comprehensively characterize nonlinear elements integrated in microwave circuits.
arXiv Detail & Related papers (2024-02-15T19:02:49Z) - Superconductivity in a Topological Lattice Model with Strong Repulsion [1.1305119700024195]
We introduce a minimal 2D lattice model that incorporates time-reversal symmetry, band topology, and strong repulsive interactions.
We demonstrate that it is formed from the weak pairing of holes atop the QSH insulator.
Motivated by this, we elucidate structural similarities and differences between our model and those of TBG in its chiral limit.
arXiv Detail & Related papers (2023-08-21T18:00:01Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Anisotropic superconductivity of niobium based on its response to
non-magnetic disorder [0.0]
Niobium is one of the most studied superconductors, both theoretically and experimentally.
In addition to power applications in alloys, pure niobium is used for sensitive magneto-sensing, radio-frequency cavities, and, more recently, as circuit metallization layers in superconducting qubits.
arXiv Detail & Related papers (2022-07-28T22:24:27Z) - Thermal self-oscillations in monolayer graphene coupled to a
superconducting microwave cavity [58.720142291102135]
We observe thermal self-oscillations in a monolayer graphene flake coupled to superconducting resonator.
The experimental observations fit well with theoretical model based on thermal instability.
The modelling of the oscillation sidebands provides a method to evaluate electron phonon coupling in disordered graphene sample at low energies.
arXiv Detail & Related papers (2022-05-27T15:38:41Z) - Engineering the Radiative Dynamics of Thermalized Excitons with Metal
Interfaces [58.720142291102135]
We analyze the emission properties of excitons in TMDCs near planar metal interfaces.
We find suppression or enhancement of emission relative to the point dipole case by several orders of magnitude.
nanoscale optical cavities are a viable pathway to generating long-lifetime exciton states in TMDCs.
arXiv Detail & Related papers (2021-10-11T19:40:24Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
tunneling Two-Level-Systems (TLS) are important for micro-fabricated quantum devices such as superconducting qubits.
We present a method to characterize individual TLS in virtually arbitrary materials deposited as thin-films.
Our approach opens avenues for quantum material spectroscopy to investigate the structure of tunneling defects.
arXiv Detail & Related papers (2020-11-29T09:57:50Z) - Observation of Distinct Superconducting Phases in Hyperdoped p-type
Germanium [0.0]
We report systematic synthesis and characterization of superconducting phases in hyperdoped Germanium.
Surprisingly, we find a nano-crystalline phase with quasi-2D characteristics consisting of a thin Ga film constrained near top surfaces.
Our results suggest the possibility of integration of hyperdoped Ge nano-crystalline phase into superconducting circuits due to its 2D nature.
arXiv Detail & Related papers (2020-08-13T18:06:40Z) - Optically induced topological superconductivity via Floquet interaction
engineering [0.0]
We propose a mechanism for light-induced unconventional superconductivity in a two-valley semiconductor with a massive Dirac type band structure.
We consider a circularly-polarized light pump and show that by controlling the detuning of the pump frequency relative to the band gap, different types of chiral superconductivity would be induced.
arXiv Detail & Related papers (2020-08-10T18:17:36Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.