論文の概要: Discrete Probabilistic Inference as Control in Multi-path Environments
- arxiv url: http://arxiv.org/abs/2402.10309v2
- Date: Mon, 27 May 2024 20:58:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 01:28:38.399523
- Title: Discrete Probabilistic Inference as Control in Multi-path Environments
- Title(参考訳): 多経路環境における離散確率推論の制御
- Authors: Tristan Deleu, Padideh Nouri, Nikolay Malkin, Doina Precup, Yoshua Bengio,
- Abstract要約: 本稿では,離散分布と構造化分布からサンプリングする問題を逐次決定問題として考察する。
我々は,GFlowNetが,フローの保存を強制することによって,報酬に比例してオブジェクトをサンプリングするポリシーを学習していることを示す。
また、GFlowNetの文献で見られるフローマッチングの目的が、精度の高いMaxEnt RLアルゴリズムと等価であることも証明した。
- 参考スコア(独自算出の注目度): 84.67055173040107
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of sampling from a discrete and structured distribution as a sequential decision problem, where the objective is to find a stochastic policy such that objects are sampled at the end of this sequential process proportionally to some predefined reward. While we could use maximum entropy Reinforcement Learning (MaxEnt RL) to solve this problem for some distributions, it has been shown that in general, the distribution over states induced by the optimal policy may be biased in cases where there are multiple ways to generate the same object. To address this issue, Generative Flow Networks (GFlowNets) learn a stochastic policy that samples objects proportionally to their reward by approximately enforcing a conservation of flows across the whole Markov Decision Process (MDP). In this paper, we extend recent methods correcting the reward in order to guarantee that the marginal distribution induced by the optimal MaxEnt RL policy is proportional to the original reward, regardless of the structure of the underlying MDP. We also prove that some flow-matching objectives found in the GFlowNet literature are in fact equivalent to well-established MaxEnt RL algorithms with a corrected reward. Finally, we study empirically the performance of multiple MaxEnt RL and GFlowNet algorithms on multiple problems involving sampling from discrete distributions.
- Abstract(参考訳): 離散分布および構造化分布からのサンプリングを逐次決定問題とみなし、対象がこの逐次過程の最後にサンプリングされるような確率的ポリシーを予め定義された報酬に比例して見つけることを目的とする。
最大エントロピー強化学習(MaxEnt RL)を用いてこの問題を解けるが、一般に、最適ポリシーによって誘導される状態の分布は、同じオブジェクトを生成する複数の方法が存在する場合に偏りが生じることが示されている。
この問題に対処するために、ジェネレーティブフローネットワーク(GFlowNets)は、マルコフ決定プロセス(MDP)全体にわたるフローの保存を概ね実施することにより、報酬に比例するオブジェクトをサンプリングする確率的ポリシーを学習する。
本稿では,MDP の構造によらず,最適な MaxEnt RL ポリシによって誘導される限界分布が元の報酬に比例することを保証するため,報酬を補正する最近の手法を拡張した。
また、GFlowNetの文献で見られるフローマッチングの目的が、精度の高いMaxEnt RLアルゴリズムと等価であることも証明した。
最後に,複数のMaxEnt RLおよびGFlowNetアルゴリズムの性能を,離散分布からのサンプリングを含む複数の問題に対して実験的に検討した。
関連論文リスト
- Optimizing Backward Policies in GFlowNets via Trajectory Likelihood Maximization [4.158255103170876]
GFlowNetsは、与えられた報酬関数に比例したオブジェクトのサンプルを学習する生成モデルのファミリーである。
近年の研究では,GFlowNetトレーニングとエントロピー規則化強化学習問題との密接な関係が示されている。
本稿では,エントロピー規則化マルコフ決定プロセスにおいて,値関数を直接逐次的に適用する,シンプルな後方ポリシー最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-20T19:12:14Z) - On Policy Evaluation Algorithms in Distributional Reinforcement Learning [0.0]
分散強化学習(DRL)による政策評価問題における未知の回帰分布を効率的に近似する新しいアルゴリズムのクラスを導入する。
提案したアルゴリズムの単純な例では、ワッサーシュタインとコルモゴロフ-スミルノフ距離の両方において誤差境界を証明する。
確率密度関数を持つ戻り分布の場合、アルゴリズムはこれらの密度を近似し、誤差境界は上限ノルム内で与えられる。
論文 参考訳(メタデータ) (2024-07-19T10:06:01Z) - Amortizing intractable inference in large language models [56.92471123778389]
難治性後部分布のサンプルとして, 償却ベイズ推定を用いる。
我々は,LLMファインチューニングの分散マッチングパラダイムが,最大習熟の代替となることを実証的に実証した。
重要な応用として、チェーン・オブ・ソート推論を潜在変数モデリング問題として解釈する。
論文 参考訳(メタデータ) (2023-10-06T16:36:08Z) - Conditional Sampling of Variational Autoencoders via Iterated
Approximate Ancestral Sampling [7.357511266926065]
変分オートエンコーダ(VAE)の条件付きサンプリングは、データ計算の欠如など、様々なアプリケーションで必要とされるが、計算上は難解である。
基本的条件付きサンプリングはMetropolis-within-Gibbs (MWG)である
論文 参考訳(メタデータ) (2023-08-17T16:08:18Z) - Policy Evaluation in Distributional LQR [70.63903506291383]
ランダムリターンの分布を閉形式で表現する。
この分布は有限個の確率変数で近似できることを示す。
近似回帰分布を用いて,リスク・アバースLQRに対するゼロ階ポリシー勾配アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-03-23T20:27:40Z) - GFlowNet Foundations [66.69854262276391]
Generative Flow Networks (GFlowNets) は、多様な候補をアクティブな学習コンテキストでサンプリングする方法として導入された。
GFlowNetのさらなる理論的性質について述べる。
論文 参考訳(メタデータ) (2021-11-17T17:59:54Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z) - Implicit Distributional Reinforcement Learning [61.166030238490634]
2つのディープジェネレータネットワーク(DGN)上に構築された暗黙の分布型アクター批判(IDAC)
半単純アクター (SIA) は、フレキシブルなポリシー分布を利用する。
我々は,代表的OpenAI Gym環境において,IDACが最先端のアルゴリズムより優れていることを観察する。
論文 参考訳(メタデータ) (2020-07-13T02:52:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。