論文の概要: Adversarial Curriculum Graph Contrastive Learning with Pair-wise
Augmentation
- arxiv url: http://arxiv.org/abs/2402.10468v1
- Date: Fri, 16 Feb 2024 06:17:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-19 17:16:07.449740
- Title: Adversarial Curriculum Graph Contrastive Learning with Pair-wise
Augmentation
- Title(参考訳): Pair-wise Augmentation を用いた対訳グラフコントラスト学習
- Authors: Xinjian Zhao, Liang Zhang, Yang Liu, Ruocheng Guo, Xiangyu Zhao
- Abstract要約: ACGCLは、グラフレベルの正と負のサンプルを制御可能な類似性を持たせるために、ペアワイズ増強の利点を生かしている。
ACGCLフレームワーク内では,新たな逆行カリキュラム学習手法が考案された。
ACGCLの総合評価は、よく知られた6つのベンチマークデータセットに関する広範な実験を通じて行われる。
- 参考スコア(独自算出の注目度): 35.875976206333185
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph contrastive learning (GCL) has emerged as a pivotal technique in the
domain of graph representation learning. A crucial aspect of effective GCL is
the caliber of generated positive and negative samples, which is intrinsically
dictated by their resemblance to the original data. Nevertheless, precise
control over similarity during sample generation presents a formidable
challenge, often impeding the effective discovery of representative graph
patterns. To address this challenge, we propose an innovative framework:
Adversarial Curriculum Graph Contrastive Learning (ACGCL), which capitalizes on
the merits of pair-wise augmentation to engender graph-level positive and
negative samples with controllable similarity, alongside subgraph contrastive
learning to discern effective graph patterns therein. Within the ACGCL
framework, we have devised a novel adversarial curriculum training methodology
that facilitates progressive learning by sequentially increasing the difficulty
of distinguishing the generated samples. Notably, this approach transcends the
prevalent sparsity issue inherent in conventional curriculum learning
strategies by adaptively concentrating on more challenging training data.
Finally, a comprehensive assessment of ACGCL is conducted through extensive
experiments on six well-known benchmark datasets, wherein ACGCL conspicuously
surpasses a set of state-of-the-art baselines.
- Abstract(参考訳): グラフ表現学習の領域において,グラフコントラスト学習(GCL)が重要な手法として登場した。
有効GCLの重要な側面は、生成した正と負のサンプルの校正であり、本来は元のデータに類似している。
それでも、サンプル生成時の類似性に関する正確な制御は、しばしば代表グラフパターンの効果的な発見を妨げる、非常に難しい課題である。
この課題に対処するために,本論文では,グラフレベルの正および負のサンプルに対してペアで拡張するメリットを活かし,制御可能な類似性を持つ,相反学習(adversarial curriculum graph contrastive learning,acgcl)を提案し,効果的なグラフパターンを見極めるためのサブグラフコントラスト学習(subgraph contrastive learning)を提案する。
acgclフレームワーク内では,生成したサンプルの識別の困難さを逐次高め,プログレッシブ・ラーニングを促進する新しい学習指導手法を考案した。
特に、この手法は、より困難なトレーニングデータに適応的に集中することで、従来のカリキュラム学習戦略に固有の普及した疎性問題を超越する。
最後に、ACGCLの総合的な評価は、6つのよく知られたベンチマークデータセットに関する広範な実験を通じて行われ、ACGCLは最先端のベースラインを著しく超えている。
関連論文リスト
- Dual Adversarial Perturbators Generate rich Views for Recommendation [16.284670207195056]
AvoGCLは、グラフ構造に逆行訓練を適用し、摂動を埋め込むことでカリキュラム学習をエミュレートする。
3つの実世界のデータセットの実験では、AvoGCLが最先端の競合より大幅に優れていることが示されている。
論文 参考訳(メタデータ) (2024-08-26T15:19:35Z) - Disentangled Generative Graph Representation Learning [51.59824683232925]
本稿では,自己教師型学習フレームワークであるDiGGR(Disentangled Generative Graph Representation Learning)を紹介する。
潜伏要因を学習し、それをグラフマスクモデリングのガイドとして活用することを目的としている。
2つの異なるグラフ学習タスクのための11の公開データセットの実験は、DiGGRが従来よりも一貫して多くの自己教師付きメソッドを上回っていることを示している。
論文 参考訳(メタデータ) (2024-08-24T05:13:02Z) - Multi-Task Curriculum Graph Contrastive Learning with Clustering Entropy Guidance [25.5510013711661]
本稿ではクラスタリング誘導型Curriculum Graph contrastive Learning(CCGL)フレームワークを提案する。
CCGLは以下のグラフ拡張とコントラスト学習のガイダンスとしてクラスタリングエントロピーを使用している。
実験の結果,CCGLは最先端の競合に比べて優れた性能を示した。
論文 参考訳(メタデータ) (2024-08-22T02:18:47Z) - Graph-level Protein Representation Learning by Structure Knowledge
Refinement [50.775264276189695]
本稿では、教師なしの方法でグラフ全体の表現を学習することに焦点を当てる。
本稿では、データ構造を用いて、ペアが正か負かの確率を決定する構造知識精製(Structure Knowledge Refinement, SKR)という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-05T09:05:33Z) - Rethinking and Simplifying Bootstrapped Graph Latents [48.76934123429186]
グラフ・コントラッシブ・ラーニング(GCL)はグラフ自己教師型ラーニングにおいて代表的なパラダイムとして登場した。
SGCLは2つの繰り返しの出力を正のペアとして利用するシンプルで効果的なGCLフレームワークである。
我々は,SGCLがより少ないパラメータ,少ない時間と空間コスト,およびかなりの収束速度で競合性能を達成可能であることを示す。
論文 参考訳(メタデータ) (2023-12-05T09:49:50Z) - On the Adversarial Robustness of Graph Contrastive Learning Methods [9.675856264585278]
本稿では,グラフコントラスト学習(GCL)モデルのロバスト性を評価するために,包括的評価ロバストネスプロトコルを提案する。
我々はこれらのモデルを,グラフ構造をターゲットとした適応的敵攻撃,特に回避シナリオに適用する。
本研究は,GCL手法の堅牢性に関する知見を提供することを目標とし,今後の研究方向の道を開くことを期待する。
論文 参考訳(メタデータ) (2023-11-29T17:59:18Z) - Localized Contrastive Learning on Graphs [110.54606263711385]
局所グラフコントラスト学習(Local-GCL)という,シンプルだが効果的なコントラストモデルを導入する。
その単純さにもかかわらず、Local-GCLは、様々なスケールと特性を持つグラフ上の自己教師付きノード表現学習タスクにおいて、非常に競争力のある性能を達成する。
論文 参考訳(メタデータ) (2022-12-08T23:36:00Z) - Uncovering the Structural Fairness in Graph Contrastive Learning [87.65091052291544]
グラフコントラスト学習(GCL)は、ノード表現を学習するための有望な自己教師型アプローチとして登場した。
GCL法で得られた表現は,GCN法で学習した表現よりも既に公平であることを示す。
我々は、低次ノードと高次ノードに異なる戦略を適用し、GRAph contrastive learning for Degree bias (GRADE)と呼ばれるグラフ拡張手法を考案した。
論文 参考訳(メタデータ) (2022-10-06T15:58:25Z) - Adversarial Cross-View Disentangled Graph Contrastive Learning [30.97720522293301]
グラフデータから最小かつ十分な表現を学習するために,情報ボトルネックの原則に従う ACDGCL を導入する。
提案したモデルが,複数のベンチマークデータセット上でのグラフ分類タスクの最先端性より優れていることを実証的に実証した。
論文 参考訳(メタデータ) (2022-09-16T03:48:39Z) - Diversified Multiscale Graph Learning with Graph Self-Correction [55.43696999424127]
2つのコア成分を組み込んだ多次元グラフ学習モデルを提案します。
情報埋め込みグラフを生成するグラフ自己補正(GSC)機構、および入力グラフの包括的な特性評価を達成するために多様性ブースト正規化(DBR)。
一般的なグラフ分類ベンチマークの実験は、提案されたGSCメカニズムが最先端のグラフプーリング方法よりも大幅に改善されることを示しています。
論文 参考訳(メタデータ) (2021-03-17T16:22:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。