論文の概要: Dual Adversarial Perturbators Generate rich Views for Recommendation
- arxiv url: http://arxiv.org/abs/2409.06719v1
- Date: Mon, 26 Aug 2024 15:19:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-15 05:11:34.219411
- Title: Dual Adversarial Perturbators Generate rich Views for Recommendation
- Title(参考訳): 二重対向摂動器が推薦のためのリッチビューを生成する
- Authors: Lijun Zhang, Yuan Yao, Haibo Ye,
- Abstract要約: AvoGCLは、グラフ構造に逆行訓練を適用し、摂動を埋め込むことでカリキュラム学習をエミュレートする。
3つの実世界のデータセットの実験では、AvoGCLが最先端の競合より大幅に優れていることが示されている。
- 参考スコア(独自算出の注目度): 16.284670207195056
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph contrastive learning (GCL) has been extensively studied and leveraged as a potent tool in recommender systems. Most existing GCL-based recommenders generate contrastive views by altering the graph structure or introducing perturbations to embedding. While these methods effectively enhance learning from sparse data, they risk performance degradation or even training collapse when the differences between contrastive views become too pronounced. To mitigate this issue, we employ curriculum learning to incrementally increase the disparity between contrastive views, enabling the model to gain from more challenging scenarios. In this paper, we propose a dual-adversarial graph learning approach, AvoGCL, which emulates curriculum learning by progressively applying adversarial training to graph structures and embedding perturbations. Specifically, AvoGCL construct contrastive views by reducing graph redundancy and generating adversarial perturbations in the embedding space, and achieve better results by gradually increasing the difficulty of contrastive views. Extensive experiments on three real-world datasets demonstrate that AvoGCL significantly outperforms the state-of-the-art competitors.
- Abstract(参考訳): グラフコントラスト学習(GCL)は、リコメンダシステムにおいて強力なツールとして広く研究され、活用されている。
既存のGCLベースのレコメンダは、グラフ構造を変更したり、埋め込みに摂動を導入することで、コントラスト的なビューを生成する。
これらの手法はスパースデータからの学習を効果的に促進するが、コントラストビューの違いが強調しすぎると性能劣化やトレーニング崩壊のリスクを負う。
この問題を緩和するため、我々はカリキュラム学習を採用し、対照的な視点の格差を漸進的に増加させ、より困難なシナリオからモデルを得られるようにする。
本稿では, グラフ構造への対角学習を段階的に適用し, 摂動を埋め込むことにより, カリキュラム学習をエミュレートする2元逆グラフ学習手法AvoGCLを提案する。
具体的には、AvoGCLはグラフ冗長性を低減し、埋め込み空間における対角摂動を発生させることでコントラストビューを構築し、コントラストビューの難易度を徐々に高め、より良い結果を得る。
3つの実世界のデータセットに対する大規模な実験は、AvoGCLが最先端の競合より大幅に優れていることを示している。
関連論文リスト
- TwinCL: A Twin Graph Contrastive Learning Model for Collaborative Filtering [20.26347686022996]
本研究では,従来の拡張手法の冗長性を実証し,ランダム拡張の代わりにツインエンコーダを導入する。
提案したTwin Graph Contrastive Learningモデル -- TwinCL -- は、ユーザとアイテムの埋め込みとツインエンコーダからの表現の正のペアを調整する。
理論的解析と実験結果から,提案モデルが推薦精度の向上と学習効率の向上に寄与することが示された。
論文 参考訳(メタデータ) (2024-09-27T22:31:08Z) - Multi-Task Curriculum Graph Contrastive Learning with Clustering Entropy Guidance [25.5510013711661]
本稿ではクラスタリング誘導型Curriculum Graph contrastive Learning(CCGL)フレームワークを提案する。
CCGLは以下のグラフ拡張とコントラスト学習のガイダンスとしてクラスタリングエントロピーを使用している。
実験の結果,CCGLは最先端の競合に比べて優れた性能を示した。
論文 参考訳(メタデータ) (2024-08-22T02:18:47Z) - Towards Robust Recommendation via Decision Boundary-aware Graph Contrastive Learning [25.514007761856632]
グラフコントラスト学習(GCL)は、データ間隔によるバイアスの低減効果により、レコメンデータシステムにおいて注目を集めている。
これらの手法は, 動的学習過程における意味的不変性と難易度とのバランスをとるのに苦慮していると論じる。
本稿では,モデル能力の進化に伴い,コントラッシブペアのセマンティック不変性を効果的に維持し,動的に適応する新しいGCLベースのレコメンデーションフレームワークRGCLを提案する。
論文 参考訳(メタデータ) (2024-07-14T13:03:35Z) - Adversarial Curriculum Graph Contrastive Learning with Pair-wise
Augmentation [35.875976206333185]
ACGCLは、グラフレベルの正と負のサンプルを制御可能な類似性を持たせるために、ペアワイズ増強の利点を生かしている。
ACGCLフレームワーク内では,新たな逆行カリキュラム学習手法が考案された。
ACGCLの総合評価は、よく知られた6つのベンチマークデータセットに関する広範な実験を通じて行われる。
論文 参考訳(メタデータ) (2024-02-16T06:17:50Z) - Graph-level Protein Representation Learning by Structure Knowledge
Refinement [50.775264276189695]
本稿では、教師なしの方法でグラフ全体の表現を学習することに焦点を当てる。
本稿では、データ構造を用いて、ペアが正か負かの確率を決定する構造知識精製(Structure Knowledge Refinement, SKR)という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-05T09:05:33Z) - Unifying Graph Contrastive Learning with Flexible Contextual Scopes [57.86762576319638]
フレキシブルコンテキストスコープを用いたグラフコントラスト学習(略してUGCL)という自己教師型学習手法を提案する。
本アルゴリズムは,隣接行列のパワーを制御し,コンテキストスコープによるフレキシブルな文脈表現を構築する。
局所的スコープと文脈的スコープの両方の表現に基づいて、distLはグラフ表現学習のための非常に単純な対照的な損失関数を最適化する。
論文 参考訳(メタデータ) (2022-10-17T07:16:17Z) - Adversarial Cross-View Disentangled Graph Contrastive Learning [30.97720522293301]
グラフデータから最小かつ十分な表現を学習するために,情報ボトルネックの原則に従う ACDGCL を導入する。
提案したモデルが,複数のベンチマークデータセット上でのグラフ分類タスクの最先端性より優れていることを実証的に実証した。
論文 参考訳(メタデータ) (2022-09-16T03:48:39Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
グラフコントラスト学習(GCL)は、手作業によるアノテーションの監督なしに、グラフ表現学習(GRL)において有望な性能を示した。
本稿では,この課題に対処するため,グラフココというグラフ補完型コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-24T02:58:36Z) - ACTIVE:Augmentation-Free Graph Contrastive Learning for Partial
Multi-View Clustering [52.491074276133325]
部分的マルチビュークラスタリングの問題を解決するために,拡張自由グラフコントラスト学習フレームワークを提案する。
提案手法は、インスタンスレベルのコントラスト学習と欠落データ推論をクラスタレベルに高め、個々の欠落データがクラスタリングに与える影響を効果的に軽減する。
論文 参考訳(メタデータ) (2022-03-01T02:32:25Z) - Dual Space Graph Contrastive Learning [82.81372024482202]
本研究では,新しいグラフコントラスト学習手法,すなわち textbfDual textbfSpace textbfGraph textbfContrastive (DSGC) Learningを提案する。
両空間にはグラフデータを埋め込み空間に表現する独自の利点があるので、グラフコントラスト学習を用いて空間をブリッジし、双方の利点を活用することを期待する。
論文 参考訳(メタデータ) (2022-01-19T04:10:29Z) - Diversified Multiscale Graph Learning with Graph Self-Correction [55.43696999424127]
2つのコア成分を組み込んだ多次元グラフ学習モデルを提案します。
情報埋め込みグラフを生成するグラフ自己補正(GSC)機構、および入力グラフの包括的な特性評価を達成するために多様性ブースト正規化(DBR)。
一般的なグラフ分類ベンチマークの実験は、提案されたGSCメカニズムが最先端のグラフプーリング方法よりも大幅に改善されることを示しています。
論文 参考訳(メタデータ) (2021-03-17T16:22:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。