論文の概要: Can We Verify Step by Step for Incorrect Answer Detection?
- arxiv url: http://arxiv.org/abs/2402.10528v3
- Date: Wed, 22 Jan 2025 03:50:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 16:52:45.177695
- Title: Can We Verify Step by Step for Incorrect Answer Detection?
- Title(参考訳): アンサー検出におけるステップバイステップの検証
- Authors: Xin Xu, Shizhe Diao, Can Yang, Yang Wang,
- Abstract要約: 本稿では,様々な推論タスクにおける推論連鎖と性能の関係を調査するためのベンチマークR2PEを紹介する。
本ベンチマークは,LLMの最終出力の誤りを推論ステップに基づいて測定することを目的としている。
本稿では,回答チェックベースラインを大きなマージンで上回るPDS(Process Discernibility score)フレームワークを提案する。
- 参考スコア(独自算出の注目度): 22.984011562264147
- License:
- Abstract: Chain-of-Thought (CoT) prompting has marked a significant advancement in enhancing the reasoning capabilities of large language models (LLMs). Previous studies have developed various extensions of CoT, which focus primarily on enhancing end-task performance. In addition, there has been research on assessing the quality of reasoning chains in CoT. This raises an intriguing question: Is it possible to predict the accuracy of LLM outputs by scrutinizing the reasoning chains they generate? To answer this research question, we introduce a benchmark, R2PE, designed specifically to explore the relationship between reasoning chains and performance in various reasoning tasks spanning five different domains. This benchmark aims to measure the falsehood of the final output of LLMs based on the reasoning steps. To make full use of information in multiple reasoning chains, we propose the process discernibility score (PDS) framework that beats the answer-checking baseline by a large margin. Concretely, this resulted in an average of $5.1\%$ increase in the F1 score and $2.97\%$ improvement in AUC-PR across all 45 subsets within R2PE. We further demonstrate our PDS's efficacy in advancing open-domain QA accuracy.
- Abstract(参考訳): CoT(Chain-of-Thought)プロンプトは,大規模言語モデル(LLM)の推論能力の向上に大きく貢献している。
従来の研究は、主にエンドタスク性能の向上に焦点を当てたCoTの様々な拡張を開発してきた。
さらに、CoTにおける推論鎖の品質を評価する研究も行われている。
LLM出力の精度は、それらが生成する推論連鎖を精査することによって予測できるのか?
そこで本研究では,5つのドメインにまたがる様々な推論タスクにおいて,推論連鎖と性能の関係を調査するためのベンチマークR2PEを提案する。
本ベンチマークは,LLMの最終出力の誤りを推論ステップに基づいて測定することを目的としている。
複数の推論チェーンにおける情報を完全に活用するために,回答チェックベースラインを大きなマージンで打ち負かすプロセス識別可能性スコア(PDS)フレームワークを提案する。
具体的には、F1スコアが平均5.1\%、R2PE内の45サブセットが平均2.97\%、AUC-PRが平均2.97\%向上した。
さらに,オープンドメインQAの精度向上にPSDの有効性を実証した。
関連論文リスト
- Rewarding Progress: Scaling Automated Process Verifiers for LLM Reasoning [90.23629291067763]
大規模言語モデルにおける推論を改善するための有望なアプローチは、プロセス報酬モデル(PRM)を使用することである。
PRMは多段階の推論トレースの各ステップでフィードバックを提供し、結果報酬モデル(ORM)よりも信用割当を改善する可能性がある。
PRMに対して探索を行ったり、強化学習(RL)の報酬として使ったりすることで、基本方針を改善するために、「プロセス報酬をどう設計すべきか?」と質問する。
理論的には,良質なプロデューサの集合を特徴付けるとともに,このようなプロデューサからのプロセス報酬の最適化が,テスト時間探索やオンラインRLの探索を改善することを示す。
論文 参考訳(メタデータ) (2024-10-10T17:31:23Z) - Deciphering the Factors Influencing the Efficacy of Chain-of-Thought: Probability, Memorization, and Noisy Reasoning [11.758019716526459]
Chain-of-Thought(CoT)プロンプトは、Large Language Models(LLM)の多段階推論能力を高めることが示されている。
CoTのプロンプト性能は,真の推論の暗黙化と確率バージョンの両方を反映していることを示す。
論文 参考訳(メタデータ) (2024-07-01T18:01:07Z) - Chain of Preference Optimization: Improving Chain-of-Thought Reasoning in LLMs [37.147529569445396]
Tree-of- Thought (ToT) 法では、ツリー探索を用いて推論空間を広範囲に探索し、CoTデコーディングが見落としてしまうかもしれない推論経路をよりよく見つける。
ToTで構築された検索ツリーを利用した細調整言語モデル(LLMs)により、CoTは同様のあるいはより良いパフォーマンスを実現することができる。
これはCPO(Chain of Preference Optimization)によって実現され、LLMはCoT推論パスの各ステップをToTのステップと整列するように微調整される。
論文 参考訳(メタデータ) (2024-06-13T14:07:02Z) - Direct Evaluation of Chain-of-Thought in Multi-hop Reasoning with Knowledge Graphs [52.42505579545893]
大規模言語モデル(LLM)は、回答とともにチェーン・オブ・シントの説明を生成するよう促されたとき、強い推論能力を示す。
本稿では,LLMの推論知識と生成したCoTの精度を評価するために,新しい識別的・生成的CoT評価パラダイムを提案する。
論文 参考訳(メタデータ) (2024-02-17T05:22:56Z) - AQA-Bench: An Interactive Benchmark for Evaluating LLMs' Sequential
Reasoning Ability [29.1826948551409]
AQA-Benchは、大規模言語モデルの逐次推論能力を評価するための新しいベンチマークである。
AQA-Benchは,2進探索,深さ優先探索,幅優先探索という3つのアルゴリズムで構築されている。
我々の調査では興味深い発見がいくつか示されている。
論文 参考訳(メタデータ) (2024-02-14T18:59:33Z) - The Impact of Reasoning Step Length on Large Language Models [40.546685248243534]
思考の連鎖(CoT)は、大きな言語モデルの推論能力を改善する上で重要である。
プロンプトにおけるCoTの有効性と推論ステップの長さの相関について検討した。
論文 参考訳(メタデータ) (2024-01-10T04:37:38Z) - Self-Evaluation Guided Beam Search for Reasoning [61.523627290397556]
我々は,Large Language Model (LLM) の推論プロセスのガイドと校正を行うための段階的自己評価機構を導入する。
本稿では,ビームサーチによる自己評価ガイダンスを統合した復号アルゴリズムを提案する。
我々のアプローチは、GSM8K、AQuA、StrategyQAにおいて、対応するCodexバックボンドベースラインをわずかに精度6.34%、9.56%、および5.46%で上回る。
論文 参考訳(メタデータ) (2023-05-01T02:37:59Z) - ReCEval: Evaluating Reasoning Chains via Correctness and Informativeness [67.49087159888298]
ReCEvalは2つの重要な特性(正確性と情報性)を通じて推論チェーンを評価するフレームワークである。
本稿では、ReCEvalが様々なエラータイプを効果的に識別し、従来の手法と比較して顕著な改善をもたらすことを示す。
論文 参考訳(メタデータ) (2023-04-21T02:19:06Z) - Faithful Chain-of-Thought Reasoning [51.21714389639417]
CoT(Chain-of-Thought)は言語モデル(LM)のパフォーマンスを様々な推論タスクで向上させる。
翻訳と問題解決という2つの段階を含む推論フレームワークであるFithful CoTを提案する。
このことは、推論連鎖が最終回答の忠実な説明を提供することを保証している。
論文 参考訳(メタデータ) (2023-01-31T03:04:26Z) - PRover: Proof Generation for Interpretable Reasoning over Rules [81.40404921232192]
本稿では,ルールベース上の二項質問に応答し,対応する証明を生成するトランスフォーマーモデルを提案する。
本モデルは,効率的な制約付き学習パラダイムを用いて,証明グラフに対応するノードやエッジを予測できることを学習する。
我々は、QAと証明生成のための有望な結果を示すために、合成、手書き、人文による規則ベースの実験を行う。
論文 参考訳(メタデータ) (2020-10-06T15:47:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。