Personalised Drug Identifier for Cancer Treatment with Transformers
using Auxiliary Information
- URL: http://arxiv.org/abs/2402.10551v1
- Date: Fri, 16 Feb 2024 10:29:25 GMT
- Title: Personalised Drug Identifier for Cancer Treatment with Transformers
using Auxiliary Information
- Authors: Aishwarya Jayagopal, Hansheng Xue, Ziyang He, Robert J. Walsh, Krishna
Kumar Hariprasannan, David Shao Peng Tan, Tuan Zea Tan, Jason J. Pitt, Anand
D. Jeyasekharan, Vaibhav Rajan
- Abstract summary: Cancer remains a global challenge due to its growing clinical and economic burden.
genomic profiling is increasingly becoming part of clinical diagnostic panels.
Effective use of such panels requires accurate drug response prediction () models, which are challenging to build due to limited labelled patient data.
We present the design of a treatment recommendation system (TRS), which is currently deployed at the National University Hospital, Singapore and is being evaluated in a clinical trial.
- Score: 5.2992434144875515
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cancer remains a global challenge due to its growing clinical and economic
burden. Its uniquely personal manifestation, which makes treatment difficult,
has fuelled the quest for personalized treatment strategies. Thus, genomic
profiling is increasingly becoming part of clinical diagnostic panels.
Effective use of such panels requires accurate drug response prediction (DRP)
models, which are challenging to build due to limited labelled patient data.
Previous methods to address this problem have used various forms of transfer
learning. However, they do not explicitly model the variable length sequential
structure of the list of mutations in such diagnostic panels. Further, they do
not utilize auxiliary information (like patient survival) for model training.
We address these limitations through a novel transformer based method, which
surpasses the performance of state-of-the-art DRP models on benchmark data. We
also present the design of a treatment recommendation system (TRS), which is
currently deployed at the National University Hospital, Singapore and is being
evaluated in a clinical trial.
Related papers
- CliCARE: Grounding Large Language Models in Clinical Guidelines for Decision Support over Longitudinal Cancer Electronic Health Records [30.100759175769454]
Large Language Models (LLMs) hold significant promise for improving clinical decision support and reducing physician burnout.<n>We propose CliCARE, a framework for Grounding Large Language Models in Clinical Guidelines for Decision Support over Longitudinal Cancer Electronic Health Records.<n>We validated our framework using large-scale, longitudinal data from a private Chinese cancer dataset and the public English MIMIC-IV dataset.
arXiv Detail & Related papers (2025-07-30T10:02:16Z) - PathBench: A comprehensive comparison benchmark for pathology foundation models towards precision oncology [33.51485504161335]
We present PathBench, the first comprehensive benchmark for pathology foundation models (PFMs)<n>Our framework incorporates large-scale data, enabling objective comparison of PFMs.<n>We have collected 15,888 WSIs from 8,549 patients across 10 hospitals, encompassing over 64 diagnosis and prognosis tasks.
arXiv Detail & Related papers (2025-05-26T16:42:22Z) - Automated Detection of Clinical Entities in Lung and Breast Cancer Reports Using NLP Techniques [0.0]
We focus on lung and breast cancer due to their high incidence and the significant impact they have on public health.<n>To enhance the accuracy and efficiency of data extraction, we utilize GMV's NLP tool uQuery.
arXiv Detail & Related papers (2025-05-14T20:44:29Z) - An Oversampling-enhanced Multi-class Imbalanced Classification Framework for Patient Health Status Prediction Using Patient-reported Outcomes [6.075416560330067]
Patient-reported outcomes (PROs) directly collected from cancer patients being treated with radiation therapy play a vital role in assisting clinicians in counseling patients regarding likely toxicities.
We explore various machine learning techniques to predict patient outcomes related to health status using PROBoost from a cancer photon/proton therapy center.
arXiv Detail & Related papers (2024-11-16T14:54:18Z) - An Explainable AI Model for Predicting the Recurrence of Differentiated Thyroid Cancer [0.0]
This study employs machine learning, particularly deep learning models, to predict the recurrence of thyroid cancer.
By analysing a dataset containing clinicopathological features of patients, the model achieved remarkable accuracy rates of 98% during training and 96% during testing.
arXiv Detail & Related papers (2024-10-13T23:12:33Z) - A Lung Nodule Dataset with Histopathology-based Cancer Type Annotation [12.617587827105496]
This research aims to bridge the gap by providing publicly accessible datasets and reliable tools for medical diagnosis.
We curated a diverse dataset of lung Computed Tomography (CT) images, comprising 330 annotated nodules (nodules are labeled as bounding boxes) from 95 distinct patients.
These promising results demonstrate that the dataset has a feasible application and further facilitate intelligent auxiliary diagnosis.
arXiv Detail & Related papers (2024-06-26T06:39:11Z) - Towards AI-Based Precision Oncology: A Machine Learning Framework for Personalized Counterfactual Treatment Suggestions based on Multi-Omics Data [0.05025737475817938]
We propose a modular machine learning framework designed for personalized counterfactual cancer treatment suggestions.
The framework is tailored to address critical challenges inherent in data-driven cancer research.
Our method aims to empower clinicians with a reality-centric decision-support tool.
arXiv Detail & Related papers (2024-02-19T14:54:20Z) - A Transformer-based representation-learning model with unified
processing of multimodal input for clinical diagnostics [63.106382317917344]
We report a Transformer-based representation-learning model as a clinical diagnostic aid that processes multimodal input in a unified manner.
The unified model outperformed an image-only model and non-unified multimodal diagnosis models in the identification of pulmonary diseases.
arXiv Detail & Related papers (2023-06-01T16:23:47Z) - Intelligent Sight and Sound: A Chronic Cancer Pain Dataset [74.77784420691937]
This paper introduces the first chronic cancer pain dataset, collected as part of the Intelligent Sight and Sound (ISS) clinical trial.
The data collected to date consists of 29 patients, 509 smartphone videos, 189,999 frames, and self-reported affective and activity pain scores.
Using static images and multi-modal data to predict self-reported pain levels, early models show significant gaps between current methods available to predict pain.
arXiv Detail & Related papers (2022-04-07T22:14:37Z) - Dimensionality Reduction of Longitudinal 'Omics Data using Modern Tensor
Factorization [4.740719424255845]
TCAM is a dimensionality reduction technique for multi-way data.
We show that TCAM outperforms traditional methods, as well as state-of-the-art tensor-based approaches for longitudinal microbiome data analysis.
arXiv Detail & Related papers (2021-11-28T14:50:14Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z) - DTR Bandit: Learning to Make Response-Adaptive Decisions With Low Regret [59.81290762273153]
Dynamic treatment regimes (DTRs) are personalized, adaptive, multi-stage treatment plans that adapt treatment decisions to an individual's initial features and to intermediate outcomes and features at each subsequent stage.
We propose a novel algorithm that, by carefully balancing exploration and exploitation, is guaranteed to achieve rate-optimal regret when the transition and reward models are linear.
arXiv Detail & Related papers (2020-05-06T13:03:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.