論文の概要: Conversational SimulMT: Efficient Simultaneous Translation with Large Language Models
- arxiv url: http://arxiv.org/abs/2402.10552v2
- Date: Sun, 16 Jun 2024 09:25:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 06:15:51.147682
- Title: Conversational SimulMT: Efficient Simultaneous Translation with Large Language Models
- Title(参考訳): Conversational SimulMT:大規模言語モデルを用いた効率的な同時翻訳
- Authors: Minghan Wang, Thuy-Trang Vu, Ehsan Shareghi, Gholamreza Haffari,
- Abstract要約: 同時機械翻訳(SimulMT)は、翻訳品質とレイテンシのトレードオフを示す。
LLMに基づくSimulMTの推論効率を向上させるための対話型SimulMTフレームワークを提案する。
- 参考スコア(独自算出の注目度): 42.77996797789591
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simultaneous machine translation (SimulMT) presents a challenging trade-off between translation quality and latency. Recent studies have shown that LLMs can achieve good performance in SimulMT tasks. However, this often comes at the expense of high inference cost and latency. In this paper, we propose a conversational SimulMT framework to enhance the inference efficiency of LLM-based SimulMT through multi-turn-dialogue-based decoding. Our experiments with Llama2-7b-chat on two SimulMT benchmarks demonstrate the superiority of LLM in translation quality while achieving comparable computational latency to specialized SimulMT models.
- Abstract(参考訳): 同時機械翻訳(SimulMT)は、翻訳品質とレイテンシのトレードオフを示す。
最近の研究で、LLMはSimulMTタスクにおいて優れた性能を発揮することが示されている。
しかし、これはしばしば高い推論コストと遅延を犠牲にします。
本稿では,マルチターン対話型デコーディングによるLLMベースのSimulMTの推論効率を向上させるための対話型SimulMTフレームワークを提案する。
2つのSimulMTベンチマークにおけるLlama2-7b-chatを用いた実験は、特殊なSimulMTモデルに匹敵する計算遅延を達成しつつ、翻訳品質におけるLLMの優位性を実証した。
関連論文リスト
- TasTe: Teaching Large Language Models to Translate through Self-Reflection [82.83958470745381]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて顕著な性能を示した。
本稿では,自己回帰を通した翻訳を行うTasTeフレームワークを提案する。
WMT22ベンチマークにおける4つの言語方向の評価結果から,既存の手法と比較して,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-06-12T17:21:21Z) - Speech Translation with Large Language Models: An Industrial Practice [64.5419534101104]
LLM-STは,事前学習型大言語モデル(LLM)に基づいて構築された,新規で効果的な音声翻訳モデルである。
大規模言語モデル(LLM)を音声エンコーダと統合し、マルチタスクの命令チューニングを利用することで、LLM-STは正確なタイムスタンプと翻訳を生成することができる。
英語と中国語のデータセットの厳密な実験を通じて,LLM-STの異常な性能を示す。
論文 参考訳(メタデータ) (2023-12-21T05:32:49Z) - Simul-LLM: A Framework for Exploring High-Quality Simultaneous Translation with Large Language Models [4.873927154453253]
数十億のパラメータを持ち、大量のデータに事前訓練された大規模言語モデル(LLM)は、さまざまな下流自然言語処理タスクにおいて、最先端の性能に近いかそれ以上の性能を持つようになった。
Simul-LLMは、SimulMTにフォーカスしたLLMのためのオープンソースのファインチューニングおよび評価パイプライン開発フレームワークである。
論文 参考訳(メタデータ) (2023-12-07T20:42:05Z) - On-the-Fly Fusion of Large Language Models and Machine Translation [3.718665608549311]
我々は,同じタスクと入力に対して,LLMを用いた機械翻訳モデルのオンザフライアンサンブルを提案する。
LLMはNMTモデルの翻訳を改善することができ、LLMとのアンサンブルは2つのより強いMTモデルをアンサンブルするよりも優れた翻訳を生成することができる。
論文 参考訳(メタデータ) (2023-11-14T16:49:33Z) - Improving Machine Translation with Large Language Models: A Preliminary Study with Cooperative Decoding [73.32763904267186]
大きな言語モデル(LLM)は、優れた翻訳品質を達成する可能性を示す。
我々は,NMTシステムを事前翻訳モデルとして扱うCooperative Decoding(CoDec)と,MT指向LLMを補足解として提案する。
論文 参考訳(メタデータ) (2023-11-06T03:41:57Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
我々は,SimulMTタスクに大規模言語モデルを適用する可能性を検討する。
MUST-Cデータセットと異なる9言語でtextttLlama2-7b-chatモデルを用いて実験を行った。
その結果,LLM は BLEU と LAAL の指標で専用MT モデルよりも優れていた。
論文 参考訳(メタデータ) (2023-09-13T04:06:47Z) - Augmenting Large Language Model Translators via Translation Memories [32.28138249566329]
翻訳メモリ(TM)をプロンプトとして使用することは、機械翻訳モデルのコンテキスト内学習において有望なアプローチである。
我々は、TMで大きな言語モデル(LLM)をプロンプトし、より優れたトランスレータを実現するための一歩を踏み出した。
論文 参考訳(メタデータ) (2023-05-27T04:47:09Z) - Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis [103.89753784762445]
大規模言語モデル(LLM)は多言語機械翻訳(MMT)の処理において顕著な可能性を示した。
本稿では, MMT における LLM の利点と課題を体系的に検討する。
また,ChatGPTとGPT-4を含む8つのLLMを徹底的に評価した。
論文 参考訳(メタデータ) (2023-04-10T15:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。