論文の概要: A Predictive Surrogate Model for Heat Transfer of an Impinging Jet on a
Concave Surface
- arxiv url: http://arxiv.org/abs/2402.10641v1
- Date: Fri, 16 Feb 2024 12:41:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-19 16:12:57.857787
- Title: A Predictive Surrogate Model for Heat Transfer of an Impinging Jet on a
Concave Surface
- Title(参考訳): 凹面衝突噴流の熱伝達予測サーロゲートモデル
- Authors: Sajad Salavatidezfouli, Saeid Rakhsha, Armin Sheidani, Giovanni
Stabile and Gianluigi Rozza
- Abstract要約: 本稿では, 円錐面に衝突するパルス噴流の伝熱予測におけるモデル次数削減(MOR)と深層学習の有効性について検討する。
そこで本研究では,Fast Fourier Transformation augmented Artificial Neural Network (FFT-ANN) を用いて,定周波シナリオ下での平均ヌッセルト数を予測する。
POD-LSTM法は, 時間モードの傾向と値の両方を捉えることにより, ランダム周波数インピーダンスシナリオ下での局所熱伝達率を予測するための堅牢な解であることが証明された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper aims to comprehensively investigate the efficacy of various Model
Order Reduction (MOR) and deep learning techniques in predicting heat transfer
in a pulsed jet impinging on a concave surface. Expanding on the previous
experimental and numerical research involving pulsed circular jets, this
investigation extends to evaluate Predictive Surrogate Models (PSM) for heat
transfer across various jet characteristics. To this end, this work introduces
two predictive approaches, one employing a Fast Fourier Transformation
augmented Artificial Neural Network (FFT-ANN) for predicting the average
Nusselt number under constant-frequency scenarios. Moreover, the investigation
introduces the Proper Orthogonal Decomposition and Long Short-Term Memory
(POD-LSTM) approach for random-frequency impingement jets. The POD-LSTM method
proves to be a robust solution for predicting the local heat transfer rate
under random-frequency impingement scenarios, capturing both the trend and
value of temporal modes. The comparison of these approaches highlights the
versatility and efficacy of advanced machine learning techniques in modelling
complex heat transfer phenomena.
- Abstract(参考訳): 本稿では, 円錐面に衝突するパルスジェットの伝熱予測におけるモデル次数削減(MOR)と深層学習の有効性を総合的に検討することを目的とする。
パルス円噴流に関する以前の実験的および数値的研究を拡張して, 種々のジェット特性を横断する熱伝達の予測的サロゲートモデル (PSM) を評価する。
そこで本研究では,Fast Fourier Transformation augmented Artificial Neural Network (FFT-ANN) を用いて,一定の周波数シナリオ下での平均ヌッセルト数を予測する。
さらに、ランダム周波数衝突噴流に対する適切な直交分解と長期記憶(POD-LSTM)手法を導入する。
POD-LSTM法は, 時間モードの傾向と値の両方を捉えることにより, ランダム周波数インピーダンスシナリオ下での局所熱伝達率を予測するための堅牢な解であることが証明された。
これらのアプローチの比較は、複雑な伝熱現象のモデリングにおける高度な機械学習技術の汎用性と有効性を強調している。
関連論文リスト
- Analysis and Forecasting of the Dynamics of a Floating Wind Turbine Using Dynamic Mode Decomposition [0.0]
本稿では, 動的モード分解(DMD)に基づくヘキサフロート浮揚風力タービンの動特性の, データ駆動式フリーモデリングについて述べる。
フローティングシステムに作用する動き,加速度,力の予測アルゴリズムを開発した。
その結果,システム状態の短期的将来予測に対するアプローチの能力が示され,リアルタイムな予測と制御が可能となった。
論文 参考訳(メタデータ) (2024-11-08T18:38:29Z) - EM Distillation for One-step Diffusion Models [65.57766773137068]
最小品質の損失を最小限に抑えた1ステップ生成モデルに拡散モデルを蒸留する最大可能性に基づく手法を提案する。
本研究では, 蒸留プロセスの安定化を図るため, 再パラメータ化サンプリング手法とノイズキャンセリング手法を開発した。
論文 参考訳(メタデータ) (2024-05-27T05:55:22Z) - Efficient modeling of sub-kilometer surface wind with Gaussian processes and neural networks [0.0]
風は、その空間的および時間的変動が高いため、モデルにとって特に困難な変数である。
本稿では,ガウス過程とニューラルネットワークを統合した表面風洞をサブキロメートル分解能でモデル化する手法を提案する。
論文 参考訳(メタデータ) (2024-05-21T09:07:47Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Stochastic Latent Transformer: Efficient Modelling of Stochastically
Forced Zonal Jets [0.0]
本稿では,SLT(Stochastic Latent Transformer)という新しい確率論的学習手法を提案する。
SLTは、様々な統合期間にわたってシステムダイナミクスを正確に再現し、定量的診断を通じて検証する。
水平平均流をエミュレートする際の5次のマグニチュードスピードアップを実現する。
論文 参考訳(メタデータ) (2023-10-25T16:17:00Z) - DYffusion: A Dynamics-informed Diffusion Model for Spatiotemporal
Forecasting [18.86526240105348]
本稿では,確率的予測のための拡散モデルを効率的に訓練する手法を提案する。
我々は,標準拡散モデルの前方および逆過程を模倣する時間条件補間器と予測器ネットワークを訓練する。
本手法は, 海面温度, ナビエ-ストークス流, および湧水系の複雑な力学の確率論的予測を競合的に行う。
論文 参考訳(メタデータ) (2023-06-03T02:46:31Z) - ShiftDDPMs: Exploring Conditional Diffusion Models by Shifting Diffusion
Trajectories [144.03939123870416]
本稿では,前処理に条件を導入することで,新しい条件拡散モデルを提案する。
いくつかのシフト規則に基づいて各条件に対して排他的拡散軌跡を割り当てるために、余剰潜在空間を用いる。
我々は textbfShiftDDPMs と呼ぶメソッドを定式化し、既存のメソッドの統一的な視点を提供する。
論文 参考訳(メタデータ) (2023-02-05T12:48:21Z) - Modeling the space-time correlation of pulsed twin beams [68.8204255655161]
パラメトリックダウンコンバージョンによって生成される絡み合ったツインビームは、画像指向アプリケーションで好まれるソースである。
本研究では,時間消費数値シミュレーションと非現実的な平面波ポンプ理論のギャップを埋めることを目的とした半解析モデルを提案する。
論文 参考訳(メタデータ) (2023-01-18T11:29:49Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
現在のベストプラクティスは、フォワードダイナミクスが既知の単純なノイズ分布に十分に近づくことを確実にするために大きなTを提唱している。
本稿では, 理想とシミュレーションされたフォワードダイナミクスのギャップを埋めるために補助モデルを用いて, 標準的な逆拡散過程を導出する方法について述べる。
論文 参考訳(メタデータ) (2022-06-10T15:09:46Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
2次元相関電子モデルにおいて、競合する秩序相の微視的ダイナミクスについて検討する。
2つの競合する位相間の光誘起遷移をシミュレートする。
論文 参考訳(メタデータ) (2022-05-13T13:13:31Z) - A latent variable approach to heat load prediction in thermal grids [10.973034520723957]
この方法はスウェーデンのルリアにある1つの多層住宅に適用される。
結果は、人工ニューラルネットワークを用いた予測と比較される。
論文 参考訳(メタデータ) (2020-02-13T09:21:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。