AbsInstruct: Eliciting Abstraction Ability from LLMs through Explanation Tuning with Plausibility Estimation
- URL: http://arxiv.org/abs/2402.10646v2
- Date: Mon, 17 Jun 2024 16:39:02 GMT
- Title: AbsInstruct: Eliciting Abstraction Ability from LLMs through Explanation Tuning with Plausibility Estimation
- Authors: Zhaowei Wang, Wei Fan, Qing Zong, Hongming Zhang, Sehyun Choi, Tianqing Fang, Xin Liu, Yangqiu Song, Ginny Y. Wong, Simon See,
- Abstract summary: Abstraction ability is crucial in human intelligence, which can also benefit various tasks in NLP study.
Existing work shows that LLMs are deficient in abstract ability, and how to improve it remains unexplored.
We design the framework AbsInstruct to enhance LLMs' abstraction ability through instruction tuning.
- Score: 60.40409210088717
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Abstraction ability is crucial in human intelligence, which can also benefit various tasks in NLP study. Existing work shows that LLMs are deficient in abstract ability, and how to improve it remains unexplored. In this work, we design the framework AbsInstruct to enhance LLMs' abstraction ability through instruction tuning. The framework builds instructions with in-depth explanations to assist LLMs in capturing the underlying rationale of abstraction. Meanwhile, we introduce a plausibility estimator to select instructions that are more consistent with the abstraction knowledge of LLMs to be aligned. Then, our framework combines abstraction instructions with general-purpose ones to build a hybrid dataset. Extensive experiments and analyses demonstrate that our framework can considerably enhance LLMs' abstraction ability with strong generalization performance while maintaining their general instruction-following abilities.
Related papers
- Enhancing LLM's Cognition via Structurization [41.13997892843677]
Large language models (LLMs) process input contexts through a causal and sequential perspective.
This paper presents a novel concept of context structurization.
Specifically, we transform the plain, unordered contextual sentences into well-ordered and hierarchically structurized elements.
arXiv Detail & Related papers (2024-07-23T12:33:58Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Adaptive Reinforcement Learning Planning: Harnessing Large Language Models for Complex Information Extraction [14.982446379660633]
Existing research on large language models (LLMs) shows that they can solve information extraction tasks through multi-step planning.
We observe that decomposing complex extraction tasks and extracting them step by step can effectively improve LLMs' performance.
This paper proposes a two-stage multi-step method for LLM-based information extraction and adopts the RL framework to execute the multi-step planning.
arXiv Detail & Related papers (2024-06-17T12:11:01Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
We introduce AlphaLLM for the self-improvements of Large Language Models.
It integrates Monte Carlo Tree Search (MCTS) with LLMs to establish a self-improving loop.
Our experimental results show that AlphaLLM significantly enhances the performance of LLMs without additional annotations.
arXiv Detail & Related papers (2024-04-18T15:21:34Z) - Meaningful Learning: Advancing Abstract Reasoning in Large Language Models via Generic Fact Guidance [38.49506722997423]
Large language models (LLMs) have developed impressive performance and strong explainability across various reasoning scenarios.
Despite this, when tasked with simple questions supported by a generic fact, LLMs often fail to provide consistent and precise answers.
This has sparked a vigorous debate about whether LLMs are genuinely reasoning or merely memorizing.
arXiv Detail & Related papers (2024-03-14T04:06:13Z) - Towards Uncovering How Large Language Model Works: An Explainability Perspective [38.07611356855978]
Large language models (LLMs) have led to breakthroughs in language tasks, yet the internal mechanisms that enable their remarkable generalization and reasoning abilities remain opaque.
This paper aims to uncover the mechanisms underlying LLM functionality through the lens of explainability.
arXiv Detail & Related papers (2024-02-16T13:46:06Z) - INTERS: Unlocking the Power of Large Language Models in Search with Instruction Tuning [59.07490387145391]
Large language models (LLMs) have demonstrated impressive capabilities in various natural language processing tasks.
Their application to information retrieval (IR) tasks is still challenging due to the infrequent occurrence of many IR-specific concepts in natural language.
We introduce a novel instruction tuning dataset, INTERS, encompassing 20 tasks across three fundamental IR categories.
arXiv Detail & Related papers (2024-01-12T12:10:28Z) - AbsPyramid: Benchmarking the Abstraction Ability of Language Models with a Unified Entailment Graph [62.685920585838616]
abstraction ability is essential in human intelligence, which remains under-explored in language models.
We present AbsPyramid, a unified entailment graph of 221K textual descriptions of abstraction knowledge.
arXiv Detail & Related papers (2023-11-15T18:11:23Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.