Semi-weakly-supervised neural network training for medical image
registration
- URL: http://arxiv.org/abs/2402.10728v1
- Date: Fri, 16 Feb 2024 14:44:40 GMT
- Title: Semi-weakly-supervised neural network training for medical image
registration
- Authors: Yiwen Li, Yunguan Fu, Iani J.M.B. Gayo, Qianye Yang, Zhe Min, Shaheer
U. Saeed, Wen Yan, Yipei Wang, J. Alison Noble, Mark Emberton, Matthew J.
Clarkson, Dean C. Barratt, Victor A. Prisacariu, Yipeng Hu
- Abstract summary: This paper describes a semi-weakly-supervised registration pipeline that improves the model performance.
We examine two types of augmentation methods by perturbation on network weights and image resampling.
Experiments using 589 male pelvic MR images, labelled with eight anatomical ROIs, show the improvement in registration performance.
- Score: 18.520388065729552
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For training registration networks, weak supervision from segmented
corresponding regions-of-interest (ROIs) have been proven effective for (a)
supplementing unsupervised methods, and (b) being used independently in
registration tasks in which unsupervised losses are unavailable or ineffective.
This correspondence-informing supervision entails cost in annotation that
requires significant specialised effort. This paper describes a
semi-weakly-supervised registration pipeline that improves the model
performance, when only a small corresponding-ROI-labelled dataset is available,
by exploiting unlabelled image pairs. We examine two types of augmentation
methods by perturbation on network weights and image resampling, such that
consistency-based unsupervised losses can be applied on unlabelled data. The
novel WarpDDF and RegCut approaches are proposed to allow commutative
perturbation between an image pair and the predicted spatial transformation
(i.e. respective input and output of registration networks), distinct from
existing perturbation methods for classification or segmentation. Experiments
using 589 male pelvic MR images, labelled with eight anatomical ROIs, show the
improvement in registration performance and the ablated contributions from the
individual strategies. Furthermore, this study attempts to construct one of the
first computational atlases for pelvic structures, enabled by registering
inter-subject MRs, and quantifies the significant differences due to the
proposed semi-weak supervision with a discussion on the potential clinical use
of example atlas-derived statistics.
Related papers
- SAMReg: SAM-enabled Image Registration with ROI-based Correspondence [12.163299991979574]
This paper describes a new spatial correspondence representation based on paired regions-of-interest (ROIs) for medical image registration.
We develop a new registration algorithm SAMReg, which does not require any training (or training data), gradient-based fine-tuning or prompt engineering.
The proposed methods outperform both intensity-based iterative algorithms and DDF-predicting learning-based networks across tested metrics.
arXiv Detail & Related papers (2024-10-17T23:23:48Z) - You've Got Two Teachers: Co-evolutionary Image and Report Distillation
for Semi-supervised Anatomical Abnormality Detection in Chest X-ray [33.272751884183556]
Experimental results on the public MIMIC-CXR benchmark demonstrate CEIRD's superior performance to several up-to-date weakly and semi-supervised methods.
arXiv Detail & Related papers (2023-07-18T12:18:21Z) - Cross-supervised Dual Classifiers for Semi-supervised Medical Image
Segmentation [10.18427897663732]
Semi-supervised medical image segmentation offers a promising solution for large-scale medical image analysis.
This paper proposes a cross-supervised learning framework based on dual classifiers (DC-Net)
Experiments on LA and Pancreas-CT dataset illustrate that DC-Net outperforms other state-of-the-art methods for semi-supervised segmentation.
arXiv Detail & Related papers (2023-05-25T16:23:39Z) - Unsupervised Visible-Infrared Person ReID by Collaborative Learning with Neighbor-Guided Label Refinement [53.044703127757295]
Unsupervised learning visible-infrared person re-identification (USL-VI-ReID) aims at learning modality-invariant features from unlabeled cross-modality dataset.
We propose a Dual Optimal Transport Label Assignment (DOTLA) framework to simultaneously assign the generated labels from one modality to its counterpart modality.
The proposed DOTLA mechanism formulates a mutual reinforcement and efficient solution to cross-modality data association, which could effectively reduce the side-effects of some insufficient and noisy label associations.
arXiv Detail & Related papers (2023-05-22T04:40:30Z) - Structure-aware registration network for liver DCE-CT images [50.28546654316009]
We propose a novel structure-aware registration method by incorporating structural information of related organs with segmentation-guided deep registration network.
Our proposed method can achieve higher registration accuracy and preserve anatomical structure more effectively than state-of-the-art methods.
arXiv Detail & Related papers (2023-03-08T14:08:56Z) - Linking data separation, visual separation, and classifier performance
using pseudo-labeling by contrastive learning [125.99533416395765]
We argue that the performance of the final classifier depends on the data separation present in the latent space and visual separation present in the projection.
We demonstrate our results by the classification of five real-world challenging image datasets of human intestinal parasites with only 1% supervised samples.
arXiv Detail & Related papers (2023-02-06T10:01:38Z) - RCPS: Rectified Contrastive Pseudo Supervision for Semi-Supervised
Medical Image Segmentation [26.933651788004475]
We propose a novel semi-supervised segmentation method named Rectified Contrastive Pseudo Supervision (RCPS)
RCPS combines a rectified pseudo supervision and voxel-level contrastive learning to improve the effectiveness of semi-supervised segmentation.
Experimental results reveal that the proposed method yields better segmentation performance compared with the state-of-the-art methods in semi-supervised medical image segmentation.
arXiv Detail & Related papers (2023-01-13T12:03:58Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - Dispensed Transformer Network for Unsupervised Domain Adaptation [21.256375606219073]
A novel unsupervised domain adaptation (UDA) method named dispensed Transformer network (DTNet) is introduced in this paper.
Our proposed network achieves the best performance in comparison with several state-of-the-art techniques.
arXiv Detail & Related papers (2021-10-28T08:27:44Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Unsupervised Instance Segmentation in Microscopy Images via Panoptic
Domain Adaptation and Task Re-weighting [86.33696045574692]
We propose a Cycle Consistency Panoptic Domain Adaptive Mask R-CNN (CyC-PDAM) architecture for unsupervised nuclei segmentation in histopathology images.
We first propose a nuclei inpainting mechanism to remove the auxiliary generated objects in the synthesized images.
Secondly, a semantic branch with a domain discriminator is designed to achieve panoptic-level domain adaptation.
arXiv Detail & Related papers (2020-05-05T11:08:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.