You've Got Two Teachers: Co-evolutionary Image and Report Distillation
for Semi-supervised Anatomical Abnormality Detection in Chest X-ray
- URL: http://arxiv.org/abs/2307.09184v1
- Date: Tue, 18 Jul 2023 12:18:21 GMT
- Title: You've Got Two Teachers: Co-evolutionary Image and Report Distillation
for Semi-supervised Anatomical Abnormality Detection in Chest X-ray
- Authors: Jinghan Sun, Dong Wei, Zhe Xu, Donghuan Lu, Hong Liu, Liansheng Wang,
Yefeng Zheng
- Abstract summary: Experimental results on the public MIMIC-CXR benchmark demonstrate CEIRD's superior performance to several up-to-date weakly and semi-supervised methods.
- Score: 33.272751884183556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chest X-ray (CXR) anatomical abnormality detection aims at localizing and
characterising cardiopulmonary radiological findings in the radiographs, which
can expedite clinical workflow and reduce observational oversights. Most
existing methods attempted this task in either fully supervised settings which
demanded costly mass per-abnormality annotations, or weakly supervised settings
which still lagged badly behind fully supervised methods in performance. In
this work, we propose a co-evolutionary image and report distillation (CEIRD)
framework, which approaches semi-supervised abnormality detection in CXR by
grounding the visual detection results with text-classified abnormalities from
paired radiology reports, and vice versa. Concretely, based on the classical
teacher-student pseudo label distillation (TSD) paradigm, we additionally
introduce an auxiliary report classification model, whose prediction is used
for report-guided pseudo detection label refinement (RPDLR) in the primary
vision detection task. Inversely, we also use the prediction of the vision
detection model for abnormality-guided pseudo classification label refinement
(APCLR) in the auxiliary report classification task, and propose a co-evolution
strategy where the vision and report models mutually promote each other with
RPDLR and APCLR performed alternatively. To this end, we effectively
incorporate the weak supervision by reports into the semi-supervised TSD
pipeline. Besides the cross-modal pseudo label refinement, we further propose
an intra-image-modal self-adaptive non-maximum suppression, where the pseudo
detection labels generated by the teacher vision model are dynamically
rectified by high-confidence predictions by the student. Experimental results
on the public MIMIC-CXR benchmark demonstrate CEIRD's superior performance to
several up-to-date weakly and semi-supervised methods.
Related papers
- Structural Entities Extraction and Patient Indications Incorporation for Chest X-ray Report Generation [10.46031380503486]
We introduce a novel method, textbfStructural textbfEntities extraction and patient indications textbfIncorporation (SEI) for chest X-ray report generation.
We employ a structural entities extraction (SEE) approach to eliminate presentation-style vocabulary in reports.
We propose a cross-modal fusion network to integrate information from X-ray images, similar historical cases, and patient-specific indications.
arXiv Detail & Related papers (2024-05-23T01:29:47Z) - Semi-weakly-supervised neural network training for medical image
registration [18.520388065729552]
This paper describes a semi-weakly-supervised registration pipeline that improves the model performance.
We examine two types of augmentation methods by perturbation on network weights and image resampling.
Experiments using 589 male pelvic MR images, labelled with eight anatomical ROIs, show the improvement in registration performance.
arXiv Detail & Related papers (2024-02-16T14:44:40Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Hierarchical Semi-Supervised Contrastive Learning for
Contamination-Resistant Anomaly Detection [81.07346419422605]
Anomaly detection aims at identifying deviant samples from the normal data distribution.
Contrastive learning has provided a successful way to sample representation that enables effective discrimination on anomalies.
We propose a novel hierarchical semi-supervised contrastive learning framework, for contamination-resistant anomaly detection.
arXiv Detail & Related papers (2022-07-24T18:49:26Z) - Breaking with Fixed Set Pathology Recognition through Report-Guided
Contrastive Training [23.506879497561712]
We employ a contrastive global-local dual-encoder architecture to learn concepts directly from unstructured medical reports.
We evaluate our approach on the large-scale chest X-Ray datasets MIMIC-CXR, CheXpert, and ChestX-Ray14 for disease classification.
arXiv Detail & Related papers (2022-05-14T21:44:05Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Weakly Supervised Contrastive Learning for Chest X-Ray Report Generation [3.3978173451092437]
Radiology report generation aims at generating descriptive text from radiology images automatically.
A typical setting consists of training encoder-decoder models on image-report pairs with a cross entropy loss.
We propose a novel weakly supervised contrastive loss for medical report generation.
arXiv Detail & Related papers (2021-09-25T00:06:23Z) - Categorical Relation-Preserving Contrastive Knowledge Distillation for
Medical Image Classification [75.27973258196934]
We propose a novel Categorical Relation-preserving Contrastive Knowledge Distillation (CRCKD) algorithm, which takes the commonly used mean-teacher model as the supervisor.
With this regularization, the feature distribution of the student model shows higher intra-class similarity and inter-class variance.
With the contribution of the CCD and CRP, our CRCKD algorithm can distill the relational knowledge more comprehensively.
arXiv Detail & Related papers (2021-07-07T13:56:38Z) - Towards Unbiased COVID-19 Lesion Localisation and Segmentation via
Weakly Supervised Learning [66.36706284671291]
We propose a data-driven framework supervised by only image-level labels to support unbiased lesion localisation.
The framework can explicitly separate potential lesions from original images, with the help of a generative adversarial network and a lesion-specific decoder.
arXiv Detail & Related papers (2021-03-01T06:05:49Z) - Learning Visual-Semantic Embeddings for Reporting Abnormal Findings on
Chest X-rays [6.686095511538683]
This work focuses on reporting abnormal findings on radiology images.
We propose a method to identify abnormal findings from the reports in addition to grouping them with unsupervised clustering and minimal rules.
We demonstrate that our method is able to retrieve abnormal findings and outperforms existing generation models on both clinical correctness and text generation metrics.
arXiv Detail & Related papers (2020-10-06T04:18:18Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.