論文の概要: The simulation of distributed quantum algorithms
- arxiv url: http://arxiv.org/abs/2402.10745v1
- Date: Fri, 16 Feb 2024 15:05:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-19 15:39:25.982939
- Title: The simulation of distributed quantum algorithms
- Title(参考訳): 分散量子アルゴリズムのシミュレーション
- Authors: Sreraman Muralidharan
- Abstract要約: 分散量子コンピューティング(DQC)は、複数の量子処理ユニットを用いて量子回路をシミュレートし、量子アルゴリズムを解く。
分散量子コンピュータのノードは、ローカル回路操作に不可欠なローカルキュービットと、ノード間の回路能力を拡張する通信キュービットの両方で構成されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study distributed quantum computing (DQC), the use of multiple quantum
processing units to simulate quantum circuits and solve quantum algorithms. The
nodes of a distributed quantum computer consist of both local qubits, essential
for local circuit operations, and communication qubits, extending circuit
capabilities across nodes. We created a distributed quantum circuit simulator
(DQCS) written in Qiskit, which we use to simulate a quantum circuit on
multiple nodes, show its applicability for distributed quantum phase
estimation, amplitude estimation. We use DQCS to study the scaling of DQC for
the quantum state preparation of a probability distribution.
- Abstract(参考訳): 分散量子コンピューティング(DQC)は、複数の量子処理ユニットを用いて量子回路をシミュレートし、量子アルゴリズムを解く。
分散量子コンピュータのノードは、ローカル回路操作に不可欠なローカルキュービットと、ノード間の回路能力を拡張する通信キュービットの両方で構成されている。
Qiskitで書かれた分散量子回路シミュレータ(DQCS)を作成し、複数のノード上の量子回路をシミュレートし、その分散量子位相推定、振幅推定への適用性を示した。
我々はDQCSを用いて、確率分布の量子状態準備のためのDQCのスケーリングを研究する。
関連論文リスト
- Distributed Quantum Simulation [13.11934294941432]
通信効率の高い分散量子シミュレーションプロトコルを提案する。
我々のプロトコルは、量子通信の複雑さの低い境界を導出することで最適であることが示されている。
我々の研究は、スケーラブルな量子シミュレーションによって実用的な量子優位を達成するための道を開いた。
論文 参考訳(メタデータ) (2024-11-05T07:48:40Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
本稿では,量子回路実行の並列化モデルを提案する。
このモデルはバックエンドに依存しない機能を利用することができ、任意のターゲットバックエンド上で並列量子回路の実行を可能にする。
論文 参考訳(メタデータ) (2024-06-05T17:16:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Qは、量子機械学習のためのオープンソースのソフトウェアフレームワークである。
古典的な機械学習ライブラリと量子シミュレータをシームレスに統合する。
量子回路とトレーニングの進捗をリアルタイムで視覚化できるグラフィカルモードを提供する。
論文 参考訳(メタデータ) (2023-01-13T09:35:05Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
本稿では,分散量子コンピューティング(DQC)のためのリソース割り当て方式を提案する。
本評価は,提案手法の有効性と,量子コンピュータとオンデマンド量子コンピュータの両立性を示すものである。
論文 参考訳(メタデータ) (2022-09-16T02:37:32Z) - Quantum Volume for Photonic Quantum Processors [15.3862808585761]
短期量子コンピューティングプロセッサのメトリクスを定義することは、量子ハードウェアの研究と開発に不可欠である。
ランダム化ベンチマークや量子ボリュームのようなほとんどのメトリクスは、もともと回路ベースの量子コンピュータに導入された。
本稿では,MBQCプロセスの物理ノイズと不完全性を等価量子回路の論理誤差にマッピングする枠組みを提案する。
論文 参考訳(メタデータ) (2022-08-24T18:05:16Z) - Arbitrary coherent distributions in a programmable quantum walk [9.037302699507409]
量子ウォーク(QW)における位置状態のコヒーレントな重ね合わせは、量子情報アプリケーションの必要性を満たすために、所望の分布に向けて正確に設計することができる。
任意のコヒーレント分布を特徴とするリッチダイナミクスは、時間と位置に依存した演算の異なる集合を導入することで得られることを実験的に実証した。
本結果は,量子ウォークに基づく量子計算,量子シミュレーション,量子情報プロトコルの実現に寄与する。
論文 参考訳(メタデータ) (2022-02-19T15:56:45Z) - Distributed Quantum Computing with QMPI [11.71212583708166]
本稿では,分散量子アルゴリズムの高性能実装を実現するために,MPI(Message Passing Interface)の拡張を提案する。
量子MPIの試作実装に加えて,分散量子コンピューティングの性能モデルであるSENDQを提案する。
論文 参考訳(メタデータ) (2021-05-03T18:30:43Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
本稿では,E-scale ACCelerator(XACC)フレームワークにおける量子回路シミュレーションバックエンドとして機能する量子仮想マシン(TNQVM)の近代化版を提案する。
新バージョンは汎用的でスケーラブルなネットワーク処理ライブラリであるExaTNをベースにしており、複数の量子回路シミュレータを提供している。
ポータブルなXACC量子プロセッサとスケーラブルなExaTNバックエンドを組み合わせることで、ラップトップから将来のエクサスケールプラットフォームにスケール可能なエンドツーエンドの仮想開発環境を導入します。
論文 参考訳(メタデータ) (2021-04-21T13:26:42Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
53量子ビット量子プロセッサにおける量子スクランブルのダイナミクスを実験的に検討する。
演算子の拡散は効率的な古典的モデルによって捉えられるが、演算子の絡み合いは指数関数的にスケールされた計算資源を必要とする。
論文 参考訳(メタデータ) (2021-01-21T22:18:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。