Masked Attention is All You Need for Graphs
- URL: http://arxiv.org/abs/2402.10793v1
- Date: Fri, 16 Feb 2024 16:20:11 GMT
- Title: Masked Attention is All You Need for Graphs
- Authors: David Buterez, Jon Paul Janet, Dino Oglic, Pietro Lio
- Abstract summary: Masked attention for graphs (MAG) has state-of-the-art performance on long-range tasks.
We show significantly better transfer learning capabilities compared to Graph neural networks (GNNs) and comparable or better time and memory scaling.
- Score: 9.342468531778874
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph neural networks (GNNs) and variations of the message passing algorithm
are the predominant means for learning on graphs, largely due to their
flexibility, speed, and satisfactory performance. The design of powerful and
general purpose GNNs, however, requires significant research efforts and often
relies on handcrafted, carefully-chosen message passing operators. Motivated by
this, we propose a remarkably simple alternative for learning on graphs that
relies exclusively on attention. Graphs are represented as node or edge sets
and their connectivity is enforced by masking the attention weight matrix,
effectively creating custom attention patterns for each graph. Despite its
simplicity, masked attention for graphs (MAG) has state-of-the-art performance
on long-range tasks and outperforms strong message passing baselines and much
more involved attention-based methods on over 55 node and graph-level tasks. We
also show significantly better transfer learning capabilities compared to GNNs
and comparable or better time and memory scaling. MAG has sub-linear memory
scaling in the number of nodes or edges, enabling learning on dense graphs and
future-proofing the approach.
Related papers
- Graph Coarsening with Message-Passing Guarantees [10.02138130221506]
We propose a new message-passing operation specific to coarsened graphs, which exhibit theoretical guarantees on the preservation of the propagated signal.
We conduct node classification tasks on synthetic and real data and observe improved results compared to performing naive message-passing on the coarsened graph.
arXiv Detail & Related papers (2024-05-28T12:39:24Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
The ubiquity of large-scale graphs in node-classification tasks hinders the real-world applications of Graph Neural Networks (GNNs)
This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs based on their spectral embeddings.
Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs.
arXiv Detail & Related papers (2024-05-27T17:52:12Z) - MuseGraph: Graph-oriented Instruction Tuning of Large Language Models
for Generic Graph Mining [41.19687587548107]
Graph Neural Networks (GNNs) need to be re-trained every time when applied to different graph tasks and datasets.
We propose a novel framework MuseGraph, which seamlessly integrates the strengths of GNNs and Large Language Models (LLMs)
Our experimental results demonstrate significant improvements in different graph tasks.
arXiv Detail & Related papers (2024-03-02T09:27:32Z) - SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning [131.04781590452308]
We present SimTeG, a frustratingly Simple approach for Textual Graph learning.
We first perform supervised parameter-efficient fine-tuning (PEFT) on a pre-trained LM on the downstream task.
We then generate node embeddings using the last hidden states of finetuned LM.
arXiv Detail & Related papers (2023-08-03T07:00:04Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
We propose an end-to-end model named MentorGNN that aims to supervise the pre-training process of GNNs across graphs.
We shed new light on the problem of domain adaption on relational data (i.e., graphs) by deriving a natural and interpretable upper bound on the generalization error of the pre-trained GNNs.
arXiv Detail & Related papers (2022-08-21T15:12:08Z) - Affinity-Aware Graph Networks [9.888383815189176]
Graph Neural Networks (GNNs) have emerged as a powerful technique for learning on relational data.
We explore the use of affinity measures as features in graph neural networks.
We propose message passing networks based on these features and evaluate their performance on a variety of node and graph property prediction tasks.
arXiv Detail & Related papers (2022-06-23T18:51:35Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
We present textbfGraph textbfModel textbfInversion attack (GraphMI), which aims to extract private graph data of the training graph by inverting GNN.
Specifically, we propose a projected gradient module to tackle the discreteness of graph edges while preserving the sparsity and smoothness of graph features.
We design a graph auto-encoder module to efficiently exploit graph topology, node attributes, and target model parameters for edge inference.
arXiv Detail & Related papers (2021-06-05T07:07:52Z) - Hierarchical Adaptive Pooling by Capturing High-order Dependency for
Graph Representation Learning [18.423192209359158]
Graph neural networks (GNN) have been proven to be mature enough for handling graph-structured data on node-level graph representation learning tasks.
This paper proposes a hierarchical graph-level representation learning framework, which is adaptively sensitive to graph structures.
arXiv Detail & Related papers (2021-04-13T06:22:24Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
Graph embedding is a way to transform and encode the data structure in high dimensional and non-Euclidean feature space.
CensNet is a general graph embedding framework, which embeds both nodes and edges to a latent feature space.
Our approach achieves or matches the state-of-the-art performance in four graph learning tasks.
arXiv Detail & Related papers (2020-10-25T22:39:31Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.