MuseGraph: Graph-oriented Instruction Tuning of Large Language Models
for Generic Graph Mining
- URL: http://arxiv.org/abs/2403.04780v2
- Date: Wed, 13 Mar 2024 15:52:33 GMT
- Title: MuseGraph: Graph-oriented Instruction Tuning of Large Language Models
for Generic Graph Mining
- Authors: Yanchao Tan, Hang Lv, Xinyi Huang, Jiawei Zhang, Shiping Wang, Carl
Yang
- Abstract summary: Graph Neural Networks (GNNs) need to be re-trained every time when applied to different graph tasks and datasets.
We propose a novel framework MuseGraph, which seamlessly integrates the strengths of GNNs and Large Language Models (LLMs)
Our experimental results demonstrate significant improvements in different graph tasks.
- Score: 41.19687587548107
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graphs with abundant attributes are essential in modeling interconnected
entities and improving predictions in various real-world applications.
Traditional Graph Neural Networks (GNNs), which are commonly used for modeling
attributed graphs, need to be re-trained every time when applied to different
graph tasks and datasets. Although the emergence of Large Language Models
(LLMs) has introduced a new paradigm in natural language processing, the
generative potential of LLMs in graph mining remains largely under-explored. To
this end, we propose a novel framework MuseGraph, which seamlessly integrates
the strengths of GNNs and LLMs and facilitates a more effective and generic
approach for graph mining across different tasks and datasets. Specifically, we
first introduce a compact graph description via the proposed adaptive input
generation to encapsulate key information from the graph under the constraints
of language token limitations. Then, we propose a diverse instruction
generation mechanism, which distills the reasoning capabilities from LLMs
(e.g., GPT-4) to create task-specific Chain-of-Thought-based instruction
packages for different graph tasks. Finally, we propose a graph-aware
instruction tuning with a dynamic instruction package allocation strategy
across tasks and datasets, ensuring the effectiveness and generalization of the
training process. Our experimental results demonstrate significant improvements
in different graph tasks, showcasing the potential of our MuseGraph in
enhancing the accuracy of graph-oriented downstream tasks while keeping the
generation powers of LLMs.
Related papers
- A Hierarchical Language Model For Interpretable Graph Reasoning [47.460255447561906]
We introduce Hierarchical Language Model for Graph (HLM-G), which employs a two-block architecture to capture node-centric local information and interaction-centric global structure.
The proposed scheme allows LLMs to address various graph queries with high efficacy, efficiency, and robustness, while reducing computational costs on large-scale graph tasks.
Comprehensive evaluations across diverse graph reasoning and real-world tasks of node, link, and graph-levels highlight the superiority of our method.
arXiv Detail & Related papers (2024-10-29T00:28:02Z) - Dynamic and Textual Graph Generation Via Large-Scale LLM-based Agent Simulation [70.60461609393779]
GraphAgent-Generator (GAG) is a novel simulation-based framework for dynamic graph generation.
Our framework effectively replicates seven macro-level structural characteristics in established network science theories.
It supports generating graphs with up to nearly 100,000 nodes or 10 million edges, with a minimum speed-up of 90.4%.
arXiv Detail & Related papers (2024-10-13T12:57:08Z) - Parameter-Efficient Tuning Large Language Models for Graph Representation Learning [62.26278815157628]
We introduce Graph-aware.
Efficient Fine-Tuning - GPEFT, a novel approach for efficient graph representation learning.
We use a graph neural network (GNN) to encode structural information from neighboring nodes into a graph prompt.
We validate our approach through comprehensive experiments conducted on 8 different text-rich graphs, observing an average improvement of 2% in hit@1 and Mean Reciprocal Rank (MRR) in link prediction evaluations.
arXiv Detail & Related papers (2024-04-28T18:36:59Z) - GraSAME: Injecting Token-Level Structural Information to Pretrained Language Models via Graph-guided Self-Attention Mechanism [10.573861741540853]
We propose a graph-guided self-attention mechanism, GraSAME, for pretrained language models.
GraSAME seamlessly incorporates token-level structural information into PLMs without necessitating additional alignment or concatenation efforts.
Our experiments on the graph-to-text generation task demonstrate that GraSAME outperforms baseline models and achieves results comparable to state-of-the-art (SOTA) models on WebNLG datasets.
arXiv Detail & Related papers (2024-04-10T11:03:57Z) - UniGraph: Learning a Unified Cross-Domain Foundation Model for Text-Attributed Graphs [30.635472655668078]
Text-Attributed Graphs (TAGs) can generalize to unseen graphs and tasks across diverse domains.
We propose a novel cascaded architecture of Language Models (LMs) and Graph Neural Networks (GNNs) as backbone networks.
We demonstrate the model's effectiveness in self-supervised representation learning on unseen graphs, few-shot in-context transfer, and zero-shot transfer.
arXiv Detail & Related papers (2024-02-21T09:06:31Z) - InstructGraph: Boosting Large Language Models via Graph-centric
Instruction Tuning and Preference Alignment [30.136514352238795]
InstructGraph is a framework that empowers large language models with the abilities of graph reasoning and generation.
We show that InstructGraph can achieve the best performance and outperform GPT-4 and LLaMA2 by more than 13% and 38%, respectively.
arXiv Detail & Related papers (2024-02-13T20:47:17Z) - GraphGPT: Graph Instruction Tuning for Large Language Models [27.036935149004726]
Graph Neural Networks (GNNs) have evolved to understand graph structures.
To enhance robustness, self-supervised learning (SSL) has become a vital tool for data augmentation.
Our research tackles this by advancing graph model generalization in zero-shot learning environments.
arXiv Detail & Related papers (2023-10-19T06:17:46Z) - SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning [131.04781590452308]
We present SimTeG, a frustratingly Simple approach for Textual Graph learning.
We first perform supervised parameter-efficient fine-tuning (PEFT) on a pre-trained LM on the downstream task.
We then generate node embeddings using the last hidden states of finetuned LM.
arXiv Detail & Related papers (2023-08-03T07:00:04Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
This paper introduces the mathematical definition of this novel problem setting.
We devise a general framework that coordinates a single graph-shared structure learner and multiple graph-specific GNNs.
The well-trained structure learner can directly produce adaptive structures for unseen target graphs without any fine-tuning.
arXiv Detail & Related papers (2023-06-20T03:33:22Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.