Generation of heralded vector-polarized single photons in remotely
controlled topological classes
- URL: http://arxiv.org/abs/2402.11046v1
- Date: Fri, 16 Feb 2024 19:44:44 GMT
- Title: Generation of heralded vector-polarized single photons in remotely
controlled topological classes
- Authors: Samuel Corona-Aquino, Zeferino Ibarra-Borja, Omar Calder\'on-Losada,
Bruno Piccirillo, Ver\'onica Vicu\~na-Hern\'andez, Tonatiuh
Moctezuma-Quistian, H\'ector Cruz-Ram\'irez, Dorilian Lopez-Mago, Alfred B.
U'Ren
- Abstract summary: A laser beam is shaped by a voltage-controlled spin-to-orbital angular momentum converter q-plate device.
Such a beam is then used as pump in a spontaneous parametric downconversion (SPDC) photon-pair source.
We demonstrate the full pump to heralded single photon transfer of the intensity/phase distributions, as well as of the vector polarization structure.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We demonstrate an experimental protocol for the preparation and control of
heralded single photons in inhomogeneously polarized states, such as Vector
Vortex and Full Poincar\'e beam states. A laser beam is shaped by a
voltage-controlled spin-to-orbital angular momentum converter q-plate device
which eliminates the need for an interferometer for the robust preparation of
high-quality inhomogeneously polarized beams. Such a beam is then used as pump
in a spontaneous parametric downconversion (SPDC) photon-pair source. We
demonstrate the full pump to heralded single photon transfer of the
intensity/phase distributions, as well as of the vector polarization structure.
Additionally, we show that by controlling the polarization to which the
heralding idler photon is projected before detection, we can toggle between the
direct and basis-switched pump-single photon transfer. We show that this
non-local control of the heralded single photon pertains also to the
topological class of the resulting heralded single photon. We believe that our
work will lead to new opportunities in photons-based quantum information
processing science.
Related papers
- Generation of polarization-entangled counter-propagating photons with high orbital angular momentum [0.0]
We propose a fiber-based source of polarization-entangled photons in high-order angular momentum modes.
The photons are converted to modes exhibiting large OAM by the two helical gratings inscribed in the core of the fiber.
arXiv Detail & Related papers (2024-10-15T23:23:20Z) - Bandwidth-tunable Telecom Single Photons Enabled by Low-noise Optomechanical Transduction [45.37752717923078]
Single-photon sources are of fundamental importance to emergent quantum technologies.
Nano-structured optomechanical crystals provide an attractive platform for single photon generation.
Optical absorption heating has thus far prevented these systems from being widely used in practical applications.
arXiv Detail & Related papers (2024-10-14T18:00:00Z) - Passive photonic CZ gate with two-level emitters in chiral multi-mode waveguide QED [41.94295877935867]
We design a passive conditional gate between co-propagating photons using an array of only two-level emitters.
The key resource is to harness the effective photon-photon interaction induced by the chiral coupling of the emitter array to two waveguide modes.
We show how to harness this non-linear phase shift to engineer a conditional, deterministic photonic gate in different qubit encodings.
arXiv Detail & Related papers (2024-07-08T18:00:25Z) - Broadband biphoton source for quantum optical coherence tomography based on a Michelson interferometer [39.58317527488534]
We describe and experimentally demonstrate a novel technique for generation of a bright collinear biphoton field with a broad spectrum.
As the most straightforward application of the source, we employ Michelson interferometer-based quantum optical coherence tomography (Q OCT)
arXiv Detail & Related papers (2024-01-31T13:52:37Z) - Atomic diffraction from single-photon transitions in gravity and
Standard-Model extensions [49.26431084736478]
We study single-photon transitions, both magnetically-induced and direct ones, in gravity and Standard-Model extensions.
We take into account relativistic effects like the coupling of internal to center-of-mass degrees of freedom, induced by the mass defect.
arXiv Detail & Related papers (2023-09-05T08:51:42Z) - Controlling photon polarisation with a single quantum dot spin [0.0]
We demonstrate the control of giant polarisation rotations induced by a single electron spin.
We find that the polarisation state of the reflected photons can be manipulated in most of the Poincar'e sphere, through controlled spin-induced rotations.
This control allows the operation of spin-photon interfaces in various configurations, including at zero or low magnetic fields.
arXiv Detail & Related papers (2022-12-07T16:37:59Z) - Entangling remote qubits using the single-photon protocol: an in-depth
theoretical and experimental study [0.0]
In the single-photon, protocol entanglement is heralded by generation of qubit-photon entangled states and subsequent detection of a single photon behind a beam splitter.
We develop an extensive theoretical model and tailor it to our experimental setting, based on nitrogen-vacancy centers in diamond.
We find that imperfect optical excitation can lead to a detection-arm-dependent entangled state fidelity and rate.
arXiv Detail & Related papers (2022-08-15T21:56:40Z) - Propagating single photons from an open cavity: Description from
universal quantization [0.0]
Quantum optics has evolved from high quality factor cavities in the early experiments toward new cavity designs involving leaky modes.
We take a different approach, and we define an inside-outside representation which is derived from the original true-mode representation.
We propose an atom-cavity non-resonant scheme for single photon generation, and we rigorously analyze the outgoing single photon in time and frequency domains.
arXiv Detail & Related papers (2022-07-10T19:01:07Z) - Bell-inequality in path-entangled single photon and purity of single
photon state [1.5924410290166868]
We present a simple scheme to perform Bell's test and show the violation of CHSH inequality in a path-entangled single photon state.
We demonstrate this experimentally by generating and controlling path-entangled state using both, heralded and un-heralded single photons.
arXiv Detail & Related papers (2021-12-09T17:03:20Z) - Investigating the coherent state detection probability of InGaAs/InP
SPAD-based single-photon detectors [55.41644538483948]
We investigate the probabilities of detecting single- and multi-photon coherent states on InGaAs/InP sine-gated and free-run avalanche diodes.
We conclude that multi-photon state detection cannot be regarded as independent events of absorption of individual single-photon states.
arXiv Detail & Related papers (2021-04-16T08:08:48Z) - Single photon randomness originating from the symmetry of dipole
emission and the unpredictability of spontaneous emission [55.41644538483948]
Quantum random number generation is a key ingredient for quantum cryptography and fundamental quantum optics.
We experimentally demonstrate quantum random number generation based on the spontaneous emission process.
The scheme can be extended to random number generation by coherent single photons with potential applications in solid-state based quantum communication at room temperature.
arXiv Detail & Related papers (2021-02-18T14:07:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.