Generation of polarization-entangled counter-propagating photons with high orbital angular momentum
- URL: http://arxiv.org/abs/2410.12113v1
- Date: Tue, 15 Oct 2024 23:23:20 GMT
- Title: Generation of polarization-entangled counter-propagating photons with high orbital angular momentum
- Authors: Elisabeth Wagner, Mikolaj K. Schmidt, Michael J. Steel, Polina R. Sharapova,
- Abstract summary: We propose a fiber-based source of polarization-entangled photons in high-order angular momentum modes.
The photons are converted to modes exhibiting large OAM by the two helical gratings inscribed in the core of the fiber.
- Score: 0.0
- License:
- Abstract: Spin and orbital angular momenta of light are attractive resources to harness for encoding, and manipulating information, with applications in various quantum photonic technologies. However, to fully harness that potential, we require robust sources of high-order angular momentum photons exhibiting nonclassical correlations. Here we propose a fiber-based source of polarization-entangled photons in high-order orbital angular momentum (OAM) modes. In our setup the pairs or photons are generated in a cylindrical fiber through a four-wave mixing process, which induces polarization, or spin entanglement. The photons are then converted to modes exhibiting large OAM by the two helical gratings inscribed in the core of the fiber. We present a complete theoretical framework used to consistently describe this process, and demonstrate a robust control over the joint spectral amplitude of the generated photons.
Related papers
- Deterministic photon source of genuine three-qubit entanglement [4.416507176974232]
A single quantum emitter embedded in a photonic resonator or waveguide may be triggered to emit one photon at a time into a desired optical mode.
By coherently controlling a single spin in the emitter, multi-photon entanglement can be realized.
arXiv Detail & Related papers (2023-10-18T15:22:36Z) - Optical vortex harmonic generation facilitated by photonic spin-orbit
entanglement [0.20999222360659608]
We report the first experimental demonstration of nonlinear optical frequency conversion.
We produce an optical vortex at the third harmonic, which has long been regarded as a forbidden process in isotropic media.
Our work opens up new possibilities of spin-orbit-coupling subwavelength waveguides.
arXiv Detail & Related papers (2023-08-05T16:01:59Z) - Shaping Single Photons through Multimode Optical Fibers using Mechanical
Perturbations [55.41644538483948]
We show an all-fiber approach for controlling the shape of single photons and the spatial correlations between entangled photon pairs.
We optimize these perturbations to localize the spatial distribution of a single photon or the spatial correlations of photon pairs in a single spot.
arXiv Detail & Related papers (2023-06-04T07:33:39Z) - Ultrabright and narrowband intra-fiber biphoton source at ultralow pump
power [51.961447341691]
Nonclassical photon sources of high brightness are key components of quantum communication technologies.
We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber.
arXiv Detail & Related papers (2022-08-10T09:04:15Z) - Engineering entangled photons for transmission in ring-core optical
fibers [0.0]
We study the generation of entangled photons tailor-made for coupling into ring core optical fibers.
We show that the coupling of photon pairs produced by parametric down-conversion can be increased by close to a factor of three.
arXiv Detail & Related papers (2021-09-07T12:55:33Z) - Room-temperature on-chip orbital angular momentum single-photon sources [2.6929576641257778]
On-chip sources carrying orbital angular momentum (OAM) are in demand for high-capacity optical information processing.
We demonstrate a room-temperature on-chip integrated OAM source that emits well-collimated single photons.
Our OAM single-photon sources bridge the gap between conventional OAM manipulation and nonclassical light sources.
arXiv Detail & Related papers (2021-04-02T15:57:34Z) - Directional emission of down-converted photons from a dielectric
nano-resonator [55.41644538483948]
We theoretically describe the generation of photon pairs in the process of spontaneous parametric down-conversion.
We reveal that highly directional photon-pair generation can be observed utilising the nonlinear Kerker-type effect.
arXiv Detail & Related papers (2020-11-16T10:30:04Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Tunable quantum interference using a topological source of
indistinguishable photon pairs [0.0]
We demonstrate the use of a two-dimensional array of ring resonators to generate indistinguishable photon pairs.
We show that the linear dispersion of the edge states over a broad bandwidth allows us to tune the correlations.
Our results pave the way for scalable and tunable sources of squeezed light.
arXiv Detail & Related papers (2020-06-04T18:11:30Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.