Lieb-Robinson correlation function for the quantum transverse field Ising model
- URL: http://arxiv.org/abs/2402.11080v2
- Date: Fri, 21 Jun 2024 20:12:00 GMT
- Title: Lieb-Robinson correlation function for the quantum transverse field Ising model
- Authors: Brendan J. Mahoney, Craig S. Lent,
- Abstract summary: We calculate the Lieb-Robinson correlation function for one-dimensional qubit arrays.
We observe the emergence of two distinct velocities of propagation.
For the semi-infinite chain of qubits at the quantum critical point, we derive an analytical result for the correlation function.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Lieb-Robinson correlation function is the norm of a commutator between local operators acting on separate subsystems at different times. This provides a useful state-independent measure for characterizing the specifically quantum interaction between spatially separated qubits. The finite propagation velocity for this correlator defines a "light-cone" of quantum influence. We calculate the Lieb-Robinson correlation function for one-dimensional qubit arrays described by the transverse field Ising model. Direct calculations of this correlation function have been limited by the exponential increase in the size of the state space with the number of qubits. We introduce a new technique that avoids this barrier by transforming the calculation to a sum over Pauli walks which results in linear scaling with system size. We can then explore propagation in arrays of hundreds of qubits and observe the effects of the quantum phase transition in the system. We observe the emergence of two distinct velocities of propagation: a correlation front velocity, which is affected by the phase transition, and the Lieb-Robinson velocity which is not. The correlation front velocity is equal to the maximum group velocity of single quasiparticle excitations. The Lieb-Robinson velocity describes the extreme leading edge of correlations when the value of the correlation function itself is still very small. For the semi-infinite chain of qubits at the quantum critical point, we derive an analytical result for the correlation function.
Related papers
- Correlation Spreading in Quantum Lattice Models with Variable-Range Interactions [0.0]
We have investigated the spreading of quantum correlations in isolated lattice models with short- or long-range interactions driven far from equilibrium via sudden global quenches.
We have shown that its causality cone displays a universal twofold structure consisting of a correlation edge and a series of local extrema.
For long-range interactions, the motion of each structure is ballistic and the associated spreading velocities are related to the group and phase velocities of the quasiparticle dispersion relation of the post-quench Hamiltonian.
arXiv Detail & Related papers (2024-10-04T03:43:10Z) - Entanglement and operator correlation signatures of many-body quantum Zeno phases in inefficiently monitored noisy systems [49.1574468325115]
The interplay between information-scrambling Hamiltonians and local continuous measurements hosts platforms for exotic measurement-induced phase transition.
We identify a non-monotonic dependence on the local noise strength in both the averaged entanglement and operator correlations.
The analysis of scaling with the system size in a finite length chain indicates that, at finite efficiency, this effect leads to distinct MiPTs for operator correlations and entanglement.
arXiv Detail & Related papers (2024-07-16T13:42:38Z) - KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - Observing super-quantum correlations across the exceptional point in a
single, two-level trapped ion [48.7576911714538]
In two-level quantum systems - qubits - unitary dynamics theoretically limit these quantum correlations to $2qrt2$ or 1.5 respectively.
Here, using a dissipative, trapped $40$Ca$+$ ion governed by a two-level, non-Hermitian Hamiltonian, we observe correlation values up to 1.703(4) for the Leggett-Garg parameter $K_3$.
These excesses occur across the exceptional point of the parity-time symmetric Hamiltonian responsible for the qubit's non-unitary, coherent dynamics.
arXiv Detail & Related papers (2023-04-24T19:44:41Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - The early-time Lieb-Robinson correlation function for qubit arrays [0.0]
We calculate the leading order of the Lieb-Robinson correlation function, not its bound, for a system of interacting qubits at early times.
The general analytical result is compared to numerical calculations and is applied to regular qubit lattices in one, two, and three dimensions.
arXiv Detail & Related papers (2022-03-14T16:32:22Z) - Entanglement and Correlation Spreading in non-Hermitian Spin Chains [0.0]
Non-Hermitian quantum many-body systems are attracting widespread interest for their exotic properties.
We study how quantum information and correlations spread under a quantum quench generated by a prototypical non-Hermitian spin chain.
arXiv Detail & Related papers (2022-01-24T19:00:02Z) - Interplay between transport and quantum coherences in free fermionic
systems [58.720142291102135]
We study the quench dynamics in free fermionic systems.
In particular, we identify a function, that we dub emphtransition map, which takes the value of the stationary current as input and gives the value of correlation as output.
arXiv Detail & Related papers (2021-03-24T17:47:53Z) - Continuous and time-discrete non-Markovian system-reservoir
interactions: Dissipative coherent quantum feedback in Liouville space [62.997667081978825]
We investigate a quantum system simultaneously exposed to two structured reservoirs.
We employ a numerically exact quasi-2D tensor network combining both diagonal and off-diagonal system-reservoir interactions with a twofold memory for continuous and discrete retardation effects.
As a possible example, we study the non-Markovian interplay between discrete photonic feedback and structured acoustic phononovian modes, resulting in emerging inter-reservoir correlations and long-living population trapping within an initially-excited two-level system.
arXiv Detail & Related papers (2020-11-10T12:38:35Z) - Lieb-Robinson bounds imply locality of interactions [0.0]
We show that Lieb-Robinson bounds are equivalent to the locality of the interactions.
A system with k-body interactions fulfills Lieb-Robinson bounds in exponential form if and only if the interactions decay exponentially in space.
arXiv Detail & Related papers (2020-06-17T18:00:03Z) - Correlation-induced steady states and limit cycles in driven dissipative
quantum systems [0.0]
We study a driven-dissipative model of spins one-half (qubits) on a lattice with nearest-neighbor interactions.
We characterize the spatial structure of the correlations in the steady state, as well as their temporal dynamics.
arXiv Detail & Related papers (2020-01-15T18:38:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.