論文の概要: Whose Emotions and Moral Sentiments Do Language Models Reflect?
- arxiv url: http://arxiv.org/abs/2402.11114v1
- Date: Fri, 16 Feb 2024 22:34:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-20 23:25:58.836887
- Title: Whose Emotions and Moral Sentiments Do Language Models Reflect?
- Title(参考訳): 言語モデルは誰の感情や道徳的感情を反映しているのか?
- Authors: Zihao He, Siyi Guo, Ashwin Rao, Kristina Lerman
- Abstract要約: 言語モデル(LM)は、ある社会集団の視点を他のグループよりも良く表現することが知られている。
両イデオロギー群とLMの相違点が有意である。
特定のイデオロギー的な視点でLMを操った後も、モデルのミスアライメントとリベラルな傾向は持続する。
- 参考スコア(独自算出の注目度): 5.958974943807783
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language models (LMs) are known to represent the perspectives of some social
groups better than others, which may impact their performance, especially on
subjective tasks such as content moderation and hate speech detection. To
explore how LMs represent different perspectives, existing research focused on
positional alignment, i.e., how closely the models mimic the opinions and
stances of different groups, e.g., liberals or conservatives. However, human
communication also encompasses emotional and moral dimensions. We define the
problem of affective alignment, which measures how LMs' emotional and moral
tone represents those of different groups. By comparing the affect of responses
generated by 36 LMs to the affect of Twitter messages, we observe significant
misalignment of LMs with both ideological groups. This misalignment is larger
than the partisan divide in the U.S. Even after steering the LMs towards
specific ideological perspectives, the misalignment and liberal tendencies of
the model persist, suggesting a systemic bias within LMs.
- Abstract(参考訳): 言語モデル(LM)は、特にコンテンツモデレーションやヘイトスピーチの検出といった主観的なタスクにおいて、他のグループよりも優れた社会集団の視点を表現することが知られている。
LMが異なる視点をどう表現するかを探求するために、既存の研究は位置的アライメント、すなわちモデルがどのように異なるグループの意見や姿勢を模倣しているかに焦点を当てている。
しかし、人間のコミュニケーションは感情的・道徳的な側面も含む。
lmsの感情的・道徳的トーンが異なるグループのトーンをどのように表現するかを測定する、感情的アライメントの問題を定義する。
36 lmsで生成された応答の影響とtwitterメッセージの影響を比較することで、両イデオロギーグループ間でのlmsの著しい不一致を観察した。
LMを特定のイデオロギー的な視点で操った後も、モデルの不適応とリベラルな傾向は持続し、LM内の体系的偏見が示唆される。
関連論文リスト
- Large Language Models Reflect the Ideology of their Creators [73.25935570218375]
大規模言語モデル(LLM)は、自然言語を生成するために大量のデータに基づいて訓練される。
異なるLLMや言語にまたがるイデオロギー的姿勢の顕著な多様性を明らかにする。
論文 参考訳(メタデータ) (2024-10-24T04:02:30Z) - Evaluating Large Language Model Biases in Persona-Steered Generation [26.92498998306013]
大規模な言語モデル (LLM) は、不連続な人格に対して、連続した人格よりも9.7%少ないことが示される。
強化学習(Reinforcement Learning from Human Feedback, RLHF)により微調整されたモデルは、特に政治的リベラル派や女性に関連するスタンスに対して、より安定している。
論文 参考訳(メタデータ) (2024-05-30T17:06:03Z) - Whose Side Are You On? Investigating the Political Stance of Large Language Models [56.883423489203786]
大規模言語モデル(LLM)の政治的指向性について,8つのトピックのスペクトルにわたって検討する。
我々の調査は、中絶からLGBTQ問題まで8つのトピックにまたがるLLMの政治的整合性について考察している。
この結果から,ユーザはクエリ作成時に留意すべきであり,中立的なプロンプト言語を選択する際には注意が必要であることが示唆された。
論文 参考訳(メタデータ) (2024-03-15T04:02:24Z) - Political Compass or Spinning Arrow? Towards More Meaningful Evaluations for Values and Opinions in Large Language Models [61.45529177682614]
我々は,大規模言語モデルにおける価値と意見の制約評価パラダイムに挑戦する。
強制されない場合、モデルが実質的に異なる答えを与えることを示す。
我々はこれらの知見をLLMの価値と意見を評価するための推奨とオープンな課題に抽出する。
論文 参考訳(メタデータ) (2024-02-26T18:00:49Z) - MoCa: Measuring Human-Language Model Alignment on Causal and Moral
Judgment Tasks [49.60689355674541]
認知科学の豊富な文献は人々の因果関係と道徳的直観を研究してきた。
この研究は、人々の判断に体系的に影響を及ぼす多くの要因を明らかにした。
大規模言語モデル(LLM)が、人間の参加者と一致するテキストベースのシナリオについて因果的、道徳的な判断を下すかどうかを検証する。
論文 参考訳(メタデータ) (2023-10-30T15:57:32Z) - Moral Foundations of Large Language Models [6.6445242437134455]
道徳的基礎理論(MFT)は、人間の道徳的推論を5つの要素に分解する心理学的評価ツールである。
大規模な言語モデル(LLM)は、インターネットから収集されたデータセットに基づいて訓練されるため、そのようなコーパスに存在するバイアスを反映する可能性がある。
本稿では、MFTをレンズとして用いて、人気のあるLLMが特定の道徳的価値観に対して偏見を得たかどうかを分析する。
論文 参考訳(メタデータ) (2023-10-23T20:05:37Z) - The Face of Populism: Examining Differences in Facial Emotional Expressions of Political Leaders Using Machine Learning [50.24983453990065]
私たちは15カ国の政治指導者の220本のYouTubeビデオのサンプルをディープラーニングで処理しています。
ポピュリスト・レトリックの度合いが異なるリーダー群間での負の感情の平均スコアの統計的に有意な差を観察した。
論文 参考訳(メタデータ) (2023-04-19T18:32:49Z) - Whose Opinions Do Language Models Reflect? [88.35520051971538]
質の高い世論調査と関連する人的反応を利用して,言語モデル(LM)に反映された意見を検討する。
我々は、現在のLMが反映している見解と、アメリカの人口集団の見解の間にかなりの不一致を見出した。
我々の分析は、人間のフィードバック調整されたLMの左利き傾向に関する事前の観察を裏付けるものである。
論文 参考訳(メタデータ) (2023-03-30T17:17:08Z) - CommunityLM: Probing Partisan Worldviews from Language Models [11.782896991259001]
コミュニティ言語モデルであるCommunityLMを用いて,同じ質問に対するコミュニティ固有の回答を探索するフレームワークを使用している。
当社のフレームワークでは、Twitter上の各コミュニティのコミットされたパルチザンメンバーと、彼らによって書かれたツイートに関する微調整LMを識別しています。
次に、対応するLMのプロンプトベース探索を用いて、2つのグループの世界観を評価する。
論文 参考訳(メタデータ) (2022-09-15T05:52:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。