Implicit Causal Representation Learning via Switchable Mechanisms
- URL: http://arxiv.org/abs/2402.11124v4
- Date: Fri, 16 Aug 2024 03:43:17 GMT
- Title: Implicit Causal Representation Learning via Switchable Mechanisms
- Authors: Shayan Shirahmad Gale Bagi, Zahra Gharaee, Oliver Schulte, Mark Crowley,
- Abstract summary: Implicit learning of causal mechanisms typically involves two categories of interventional data: hard and soft interventions.
In this paper, we tackle the challenges of learning causal models using soft interventions while retaining implicit modelling.
We propose ICLR-SM, which models the effects of soft interventions by employing a causal mechanism switch variable designed to toggle between different causal mechanisms.
- Score: 11.870185425476429
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Learning causal representations from observational and interventional data in the absence of known ground-truth graph structures necessitates implicit latent causal representation learning. Implicit learning of causal mechanisms typically involves two categories of interventional data: hard and soft interventions. In real-world scenarios, soft interventions are often more realistic than hard interventions, as the latter require fully controlled environments. Unlike hard interventions, which directly force changes in a causal variable, soft interventions exert influence indirectly by affecting the causal mechanism. However, the subtlety of soft interventions impose several challenges for learning causal models. One challenge is that soft intervention's effects are ambiguous, since parental relations remain intact. In this paper, we tackle the challenges of learning causal models using soft interventions while retaining implicit modelling. We propose ICLR-SM, which models the effects of soft interventions by employing a causal mechanism switch variable designed to toggle between different causal mechanisms. In our experiments, we consistently observe improved learning of identifiable, causal representations, compared to baseline approaches.
Related papers
- DAG-aware Transformer for Causal Effect Estimation [0.8192907805418583]
Causal inference is a critical task across fields such as healthcare, economics, and the social sciences.
In this paper, we present a novel transformer-based method for causal inference that overcomes these challenges.
The core innovation of our model lies in its integration of causal Directed Acyclic Graphs (DAGs) directly into the attention mechanism.
arXiv Detail & Related papers (2024-10-13T23:17:58Z) - Missed Causes and Ambiguous Effects: Counterfactuals Pose Challenges for Interpreting Neural Networks [14.407025310553225]
Interpretability research takes counterfactual theories of causality for granted.
Counterfactual theories have problems that bias our findings in specific and predictable ways.
We discuss the implications of these challenges for interpretability researchers.
arXiv Detail & Related papers (2024-07-05T17:53:03Z) - Targeted Reduction of Causal Models [55.11778726095353]
Causal Representation Learning offers a promising avenue to uncover interpretable causal patterns in simulations.
We introduce Targeted Causal Reduction (TCR), a method for condensing complex intervenable models into a concise set of causal factors.
Its ability to generate interpretable high-level explanations from complex models is demonstrated on toy and mechanical systems.
arXiv Detail & Related papers (2023-11-30T15:46:22Z) - Interpretable Imitation Learning with Dynamic Causal Relations [65.18456572421702]
We propose to expose captured knowledge in the form of a directed acyclic causal graph.
We also design this causal discovery process to be state-dependent, enabling it to model the dynamics in latent causal graphs.
The proposed framework is composed of three parts: a dynamic causal discovery module, a causality encoding module, and a prediction module, and is trained in an end-to-end manner.
arXiv Detail & Related papers (2023-09-30T20:59:42Z) - Causal Triplet: An Open Challenge for Intervention-centric Causal
Representation Learning [98.78136504619539]
Causal Triplet is a causal representation learning benchmark featuring visually more complex scenes.
We show that models built with the knowledge of disentangled or object-centric representations significantly outperform their distributed counterparts.
arXiv Detail & Related papers (2023-01-12T17:43:38Z) - Disentangling Causal Effects from Sets of Interventions in the Presence
of Unobserved Confounders [19.32843499761667]
We aim to learn the effect of a single-intervention from both observational data and sets of interventions.
We provide an algorithm that learns the causal model parameters by pooling data from different regimes.
The effectiveness of our method is empirically demonstrated on both synthetic and real-world data.
arXiv Detail & Related papers (2022-10-11T13:42:36Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
We introduce a causal formalism of motion forecasting, which casts the problem as a dynamic process with three groups of latent variables.
We devise a modular architecture that factorizes the representations of invariant mechanisms and style confounders to approximate a causal graph.
Experiment results on synthetic and real datasets show that our three proposed components significantly improve the robustness and reusability of the learned motion representations.
arXiv Detail & Related papers (2021-11-29T18:59:09Z) - Shaking the foundations: delusions in sequence models for interaction
and control [45.34593341136043]
We show that sequence models "lack the understanding of the cause and effect of their actions" leading them to draw incorrect inferences due to auto-suggestive delusions.
We show that in supervised learning, one can teach a system to condition or intervene on data by training with factual and counterfactual error signals respectively.
arXiv Detail & Related papers (2021-10-20T23:31:05Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - ACRE: Abstract Causal REasoning Beyond Covariation [90.99059920286484]
We introduce the Abstract Causal REasoning dataset for systematic evaluation of current vision systems in causal induction.
Motivated by the stream of research on causal discovery in Blicket experiments, we query a visual reasoning system with the following four types of questions in either an independent scenario or an interventional scenario.
We notice that pure neural models tend towards an associative strategy under their chance-level performance, whereas neuro-symbolic combinations struggle in backward-blocking reasoning.
arXiv Detail & Related papers (2021-03-26T02:42:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.