Token-Ensemble Text Generation: On Attacking the Automatic AI-Generated
Text Detection
- URL: http://arxiv.org/abs/2402.11167v1
- Date: Sat, 17 Feb 2024 02:25:57 GMT
- Title: Token-Ensemble Text Generation: On Attacking the Automatic AI-Generated
Text Detection
- Authors: Fan Huang, Haewoon Kwak, Jisun An
- Abstract summary: This study proposes a novel token-ensemble generation strategy to challenge the robustness of current AI-content detection approaches.
We find the token-ensemble approach significantly drops the performance of AI-content detection models.
- Score: 7.047135911489917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The robustness of AI-content detection models against cultivated attacks
(e.g., paraphrasing or word switching) remains a significant concern. This
study proposes a novel token-ensemble generation strategy to challenge the
robustness of current AI-content detection approaches. We explore the ensemble
attack strategy by completing the prompt with the next token generated from
random candidate LLMs. We find the token-ensemble approach significantly drops
the performance of AI-content detection models (The code and test sets will be
released). Our findings reveal that token-ensemble generation poses a vital
challenge to current detection models and underlines the need for advancing
detection technologies to counter sophisticated adversarial strategies.
Related papers
- Resource-Efficient Adaptation of Large Language Models for Text Embeddings via Prompt Engineering and Contrastive Fine-tuning [6.549601823162279]
Large Language Models (LLMs) have become a cornerstone in Natural Language Processing (NLP)<n>We explore several adaptation strategies for pre-trained, decoder-only LLMs.
arXiv Detail & Related papers (2025-07-30T14:49:30Z) - Detecting Document-level Paraphrased Machine Generated Content: Mimicking Human Writing Style and Involving Discourse Features [57.34477506004105]
Machine-generated content poses challenges such as academic plagiarism and the spread of misinformation.
We introduce novel methodologies and datasets to overcome these challenges.
We propose MhBART, an encoder-decoder model designed to emulate human writing style.
We also propose DTransformer, a model that integrates discourse analysis through PDTB preprocessing to encode structural features.
arXiv Detail & Related papers (2024-12-17T08:47:41Z) - DeTeCtive: Detecting AI-generated Text via Multi-Level Contrastive Learning [24.99797253885887]
We argue that the key to accomplishing this task lies in distinguishing writing styles of different authors.
We propose DeTeCtive, a multi-task auxiliary, multi-level contrastive learning framework.
Our method is compatible with a range of text encoders.
arXiv Detail & Related papers (2024-10-28T12:34:49Z) - Unveiling Large Language Models Generated Texts: A Multi-Level Fine-Grained Detection Framework [9.976099891796784]
Large language models (LLMs) have transformed human writing by enhancing grammar correction, content expansion, and stylistic refinement.
Existing detection methods, which mainly rely on single-feature analysis and binary classification, often fail to effectively identify LLM-generated text in academic contexts.
We propose a novel Multi-level Fine-grained Detection framework that detects LLM-generated text by integrating low-level structural, high-level semantic, and deep-level linguistic features.
arXiv Detail & Related papers (2024-10-18T07:25:00Z) - Detecting Machine-Generated Long-Form Content with Latent-Space Variables [54.07946647012579]
Existing zero-shot detectors primarily focus on token-level distributions, which are vulnerable to real-world domain shifts.
We propose a more robust method that incorporates abstract elements, such as event transitions, as key deciding factors to detect machine versus human texts.
arXiv Detail & Related papers (2024-10-04T18:42:09Z) - Is Contrasting All You Need? Contrastive Learning for the Detection and Attribution of AI-generated Text [4.902089836908786]
WhosAI is a triplet-network contrastive learning framework designed to predict whether a given input text has been generated by humans or AI.
We show that our proposed framework achieves outstanding results in both the Turing Test and Authorship tasks.
arXiv Detail & Related papers (2024-07-12T15:44:56Z) - Enhancing Text Authenticity: A Novel Hybrid Approach for AI-Generated Text Detection [8.149808049643344]
We propose a novel hybrid approach that combines TF-IDF techniques with advanced machine learning models.
Our approach achieves superior performance compared to existing methods.
arXiv Detail & Related papers (2024-06-01T10:21:54Z) - Spotting AI's Touch: Identifying LLM-Paraphrased Spans in Text [61.22649031769564]
We propose a novel framework, paraphrased text span detection (PTD)
PTD aims to identify paraphrased text spans within a text.
We construct a dedicated dataset, PASTED, for paraphrased text span detection.
arXiv Detail & Related papers (2024-05-21T11:22:27Z) - Exploring Precision and Recall to assess the quality and diversity of LLMs [82.21278402856079]
We introduce a novel evaluation framework for Large Language Models (LLMs) such as textscLlama-2 and textscMistral.
This approach allows for a nuanced assessment of the quality and diversity of generated text without the need for aligned corpora.
arXiv Detail & Related papers (2024-02-16T13:53:26Z) - LLM-Detector: Improving AI-Generated Chinese Text Detection with
Open-Source LLM Instruction Tuning [4.328134379418151]
Existing AI-generated text detection models are prone to in-domain over-fitting.
We propose LLM-Detector, a novel method for both document-level and sentence-level text detection.
arXiv Detail & Related papers (2024-02-02T05:54:12Z) - SeqXGPT: Sentence-Level AI-Generated Text Detection [62.3792779440284]
We introduce a sentence-level detection challenge by synthesizing documents polished with large language models (LLMs)
We then propose textbfSequence textbfX (Check) textbfGPT, a novel method that utilizes log probability lists from white-box LLMs as features for sentence-level AIGT detection.
arXiv Detail & Related papers (2023-10-13T07:18:53Z) - Language Model Decoding as Direct Metrics Optimization [87.68281625776282]
Current decoding methods struggle to generate texts that align with human texts across different aspects.
In this work, we frame decoding from a language model as an optimization problem with the goal of strictly matching the expected performance with human texts.
We prove that this induced distribution is guaranteed to improve the perplexity on human texts, which suggests a better approximation to the underlying distribution of human texts.
arXiv Detail & Related papers (2023-10-02T09:35:27Z) - MAGE: Machine-generated Text Detection in the Wild [82.70561073277801]
Large language models (LLMs) have achieved human-level text generation, emphasizing the need for effective AI-generated text detection.
We build a comprehensive testbed by gathering texts from diverse human writings and texts generated by different LLMs.
Despite challenges, the top-performing detector can identify 86.54% out-of-domain texts generated by a new LLM, indicating the feasibility for application scenarios.
arXiv Detail & Related papers (2023-05-22T17:13:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.