論文の概要: LaCo: Large Language Model Pruning via Layer Collapse
- arxiv url: http://arxiv.org/abs/2402.11187v1
- Date: Sat, 17 Feb 2024 04:16:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-20 22:49:15.852082
- Title: LaCo: Large Language Model Pruning via Layer Collapse
- Title(参考訳): LaCo: レイヤ崩壊による大規模言語モデルプルーニング
- Authors: Yifei Yang, Zouying Cao, Hai Zhao
- Abstract要約: トランスフォーマーに基づく大規模言語モデル(LLM)は、サイズ拡大の顕著な傾向を目撃している。
後部モデル層が先行層に崩壊する,textitLayer Collapse (LaCo) と呼ばれる簡潔な層分割法を提案する。
実験の結果,25~30%の刈り取り率で平均タスク性能が80%以上維持されていることがわかった。
- 参考スコア(独自算出の注目度): 63.973142426228016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) based on transformer are witnessing a notable
trend of size expansion, which brings considerable costs to both model training
and inference. However, existing methods such as model quantization, knowledge
distillation, and model pruning are constrained by various issues, including
hardware support limitations, the need for extensive training, and alterations
to the internal structure of the model. In this paper, we propose a concise
layer-wise pruning method called \textit{Layer Collapse (LaCo)}, in which rear
model layers collapse into a prior layer, enabling a rapid reduction in model
size while preserving the model structure. Comprehensive experiments show that
our method maintains an average task performance of over 80\% at pruning ratios
of 25-30\%, significantly outperforming existing state-of-the-art structured
pruning methods. We also conduct post-training experiments to confirm that the
proposed pruning method effectively inherits the parameters of the original
model. Finally, we discuss our motivation from the perspective of layer-wise
similarity and evaluate the performance of the pruned LLMs across various
pruning ratios.
- Abstract(参考訳): トランスフォーマーに基づく大規模言語モデル(llm)は、モデルトレーニングと推論の両方にかなりのコストをもたらす、サイズ拡張の注目すべきトレンドを目撃している。
しかし、モデル量子化、知識蒸留、モデルプルーニングといった既存の手法は、ハードウェアサポートの制限、広範なトレーニングの必要性、モデルの内部構造の変更など、様々な問題によって制約されている。
本稿では, モデル構造を保ちながらモデルサイズを高速に削減し, 後部モデル層を前層に崩壊させる「textit{Layer Collapse (LaCo)}」と呼ばれる簡潔な層分割法を提案する。
包括的実験により,提案手法はプルーニング比が25~30\%で平均80\%以上のタスク性能を維持し,従来の構造プルーニング法を大きく上回ることを示した。
また,提案手法が元のモデルのパラメータを効果的に継承することを確認した後学習実験を行った。
最後に, 層間類似性の観点からのモチベーションを考察し, 各種プルーニング比におけるプルーニングllmの性能評価を行った。
関連論文リスト
- SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - Pruning Large Language Models with Semi-Structural Adaptive Sparse Training [17.381160429641316]
適応スパーストレーナー(AST)と呼ばれるリトレーニングによる半構造化スパースモデルのプルーニングパイプラインを提案する。
ASTは、モデルがトレーニングプロセスを通して適応的にマスクを選択することを可能にし、マスキング重みに減衰を施すことにより、密度の高いモデルをスパースモデルに変換する。
本研究は,半構造化されたスパース言語モデルの実現可能性を示し,高度に圧縮されたモデルを実現するための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-30T06:33:44Z) - Fine-Tuning with Divergent Chains of Thought Boosts Reasoning Through Self-Correction in Language Models [63.36637269634553]
本稿では,複数の推論連鎖を比較するためにモデルを必要とすることによって,性能を向上する新しい手法を提案する。
DCoTデータセットの命令チューニングにより、より小さく、よりアクセスしやすい言語モデルの性能が向上することがわかった。
論文 参考訳(メタデータ) (2024-07-03T15:01:18Z) - The LLM Surgeon [33.90611088414982]
我々は、スクラッチから小さなモデルをトレーニングする代替手段として、既存の事前訓練モデルのデータ駆動圧縮について検討する。
我々は、非構造的、半構造的、構造的プルーニングのための一般的なフレームワークを提供し、重み間の相関性を高めるために、重み更新を改善する。
提案手法では,OPTモデルとLlamav2-7Bの行と列を20%~30%削減できる。
論文 参考訳(メタデータ) (2023-12-28T18:59:09Z) - Sheared LLaMA: Accelerating Language Model Pre-training via Structured Pruning [52.29522018586365]
我々は,事前訓練された大規模モデルからより小型のLCMを開発するための効果的な方法として構造化プルーニングについて検討した。
提案手法では,(1)階層,頭部,中間および隠蔽次元をエンド・ツー・エンドに除去することで,より大きなモデルを特定のターゲット形状にプルーニングするターゲット構造化プルーニングと,(2)各トレーニングバッチにおけるサンプルデータの構成を,異なるドメイン間での損失に基づいて動的に更新する動的バッチローディングという2つの重要な手法を用いる。
論文 参考訳(メタデータ) (2023-10-10T15:13:30Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
本稿では,アクセル時間で測定された等価計算に基づくモデル比較を可能にする実験的プロトコルを提案する。
私たちは、既存の学術的ベンチマークを上回り、品質、多様性、文書の長さで上回る、大規模で多様で高品質な書籍データセットを前処理します。
この研究は、GPT-2アーキテクチャから派生したフィードフォワードモデルと、10倍のスループットを持つ新しいLSTMの形式でのリカレントモデルという2つのベースラインモデルも提供する。
論文 参考訳(メタデータ) (2023-09-20T10:31:17Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
行列積演算子(MPO)に基づくより有能なパラメータ共有アーキテクチャを設計する。
MPO分解はパラメータ行列の情報を再編成し、2つの部分に分解することができる。
私たちのアーキテクチャは、モデルのサイズを減らすために、すべてのレイヤで中央テンソルを共有しています。
論文 参考訳(メタデータ) (2023-03-27T02:34:09Z) - Gradient-based Intra-attention Pruning on Pre-trained Language Models [21.444503777215637]
本稿では,GRAIN (Gradient-based intra-attention pruning) を用いた構造化プルーニング手法を提案する。
GRAINは、アテンション内構造を検査し、プーンし、構造探索空間を大きく拡張し、より柔軟なモデルを可能にする。
GLUE、SQuAD、CoNLL 2003の実験では、GRAINは特に高頻度で他の手法よりも優れていることが示されている。
論文 参考訳(メタデータ) (2022-12-15T06:52:31Z) - On the Effect of Dropping Layers of Pre-trained Transformer Models [35.25025837133909]
我々は、事前訓練されたモデルにレイヤをドロップする戦略を探求し、下流のGLUEタスクに対するプルーニングの効果を観察する。
BERT、RoBERTa、XLNetのモデルを40%まで、元のパフォーマンスの98%を維持できたのです。
実験の結果,下層が下流のタスク性能を維持する上で最も重要であること,(ii)パラフレーズ検出や文類似性などのタスクは,レイヤの降下に対してより堅牢であること,(iii)異なる目的関数を用いてトレーニングされたモデルが異なる学習パターンを示し,レイヤが低下すること,などの興味深い観察結果が得られた。
論文 参考訳(メタデータ) (2020-04-08T07:09:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。