Privacy Impact Assessments in the Wild: A Scoping Review
- URL: http://arxiv.org/abs/2402.11193v2
- Date: Sat, 29 Jun 2024 07:06:30 GMT
- Title: Privacy Impact Assessments in the Wild: A Scoping Review
- Authors: Leonardo Horn Iwaya, Ala Sarah Alaqra, Marit Hansen, Simone Fischer-Hübner,
- Abstract summary: Privacy Impact Assessments (PIAs) offer a systematic process for assessing the privacy impacts of a project or system.
PIAs are heralded as one of the main approaches to privacy by design, supporting the early identification of threats and controls.
There is still a significant need for more primary research on the topic, both qualitative and quantitative.
- Score: 1.7677916783208343
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Privacy Impact Assessments (PIAs) offer a systematic process for assessing the privacy impacts of a project or system. As a privacy engineering strategy, PIAs are heralded as one of the main approaches to privacy by design, supporting the early identification of threats and controls. However, there is still a shortage of empirical evidence on their uptake and proven effectiveness in practice. To better understand the current state of literature and research, this paper provides a comprehensive Scoping Review (ScR) on the topic of PIAs "in the wild", following the well-established Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. As a result, this ScR includes 45 studies, providing an extensive synthesis of the existing body of knowledge, classifying types of research and publications, appraising the methodological quality of primary research, and summarising the positive and negative aspects of PIAs in practice, as reported by studies. This ScR also identifies significant research gaps (e.g., evidence gaps from contradictory results and methodological gaps from research design deficiencies), future research pathways, and implications for researchers, practitioners, and policymakers developing and evaluating PIA frameworks. As we conclude, there is still a significant need for more primary research on the topic, both qualitative and quantitative. A critical appraisal of qualitative studies (n=28) revealed deficiencies in the methodological quality, and only four quantitative studies were identified, suggesting that current primary research remains incipient. Nonetheless, PIAs can be regarded as a prominent sub-area in the broader field of Empirical Privacy Engineering, warranting further research toward more evidence-based practices.
Related papers
- Rapid Biomedical Research Classification: The Pandemic PACT Advanced Categorisation Engine [10.692728349388297]
Pandemic PACT project aims to track and analyse research funding and clinical evidence for a wide range of diseases with outbreak potential.
This paper introduces the Pandemic PACT Advanced Categorisation Engine (PPACE) along with its associated dataset.
arXiv Detail & Related papers (2024-07-14T05:22:53Z) - A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence [58.6354685593418]
This paper proposes several article-level, field-normalized, and large language model-empowered bibliometric indicators to evaluate reviews.
The newly emerging AI-generated literature reviews are also appraised.
This work offers insights into the current challenges of literature reviews and envisions future directions for their development.
arXiv Detail & Related papers (2024-02-20T11:28:50Z) - De-identification of clinical free text using natural language
processing: A systematic review of current approaches [48.343430343213896]
Natural language processing has repeatedly demonstrated its feasibility in automating the de-identification process.
Our study aims to provide systematic evidence on how the de-identification of clinical free text has evolved in the last thirteen years.
arXiv Detail & Related papers (2023-11-28T13:20:41Z) - A Systematic Review of Aspect-based Sentiment Analysis: Domains, Methods, and Trends [2.781593421115434]
Aspect-based sentiment analysis (ABSA) is a fine-grained type of sentiment analysis that identifies aspects and their associated opinions from a text.
With the surge of digital opinionated text data, ABSA gained increasing popularity for its ability to mine more detailed and targeted insights.
This paper presents a systematic literature review of ABSA studies with a focus on trends and high-level relationships among these fundamental components.
arXiv Detail & Related papers (2023-11-16T06:01:47Z) - Assessing Utility of Differential Privacy for RCTs [44.15661493715815]
We empirically assess the impact of strong privacy-preservation methodology (with acDP guarantees) on published analyses from RCTs.
We find that relatively straightforward DP-based methods allow for inference-valid protection of the published data.
arXiv Detail & Related papers (2023-09-26T00:10:32Z) - A Diachronic Analysis of Paradigm Shifts in NLP Research: When, How, and
Why? [84.46288849132634]
We propose a systematic framework for analyzing the evolution of research topics in a scientific field using causal discovery and inference techniques.
We define three variables to encompass diverse facets of the evolution of research topics within NLP.
We utilize a causal discovery algorithm to unveil the causal connections among these variables using observational data.
arXiv Detail & Related papers (2023-05-22T11:08:00Z) - Fairness in Recommender Systems: Research Landscape and Future
Directions [119.67643184567623]
We review the concepts and notions of fairness that were put forward in the area in the recent past.
We present an overview of how research in this field is currently operationalized.
Overall, our analysis of recent works points to certain research gaps.
arXiv Detail & Related papers (2022-05-23T08:34:25Z) - Through the Data Management Lens: Experimental Analysis and Evaluation
of Fair Classification [75.49600684537117]
Data management research is showing an increasing presence and interest in topics related to data and algorithmic fairness.
We contribute a broad analysis of 13 fair classification approaches and additional variants, over their correctness, fairness, efficiency, scalability, and stability.
Our analysis highlights novel insights on the impact of different metrics and high-level approach characteristics on different aspects of performance.
arXiv Detail & Related papers (2021-01-18T22:55:40Z) - Enterprise Architecture in Healthcare Systems: A systematic literature
review [0.0]
Enterprise architecture (EA) has been present in scientific literature since the 1980s.
EA delivers value by presenting business and ICT leaders with recommendations for adjusting policies and projects to achieve business goals.
This work presents a systematic literature review to select studies demonstrating current EA practices in healthcare systems.
arXiv Detail & Related papers (2020-07-14T02:01:25Z) - Secondary Studies in the Academic Context: A Systematic Mapping and
Survey [4.122293798697967]
The main goal of this study is to provide an overview on the use of secondary studies in an academic context.
We conducted an SM to identify the available and relevant studies on the use of secondary studies as a research methodology for conducting SE research projects.
Secondly, a survey was performed with 64 SE researchers to identify their perception related to the value of performing secondary studies to support their research projects.
arXiv Detail & Related papers (2020-07-10T20:01:26Z) - A Survey on Causal Inference [64.45536158710014]
Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics.
Various causal effect estimation methods for observational data have sprung up.
arXiv Detail & Related papers (2020-02-05T21:35:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.